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Abstract. Payment channels were introduced to solve various eminent
cryptocurrency scalability issues. Multiple payment channels build a net-
work on top of a blockchain, the so-called layer 2. In this work, we analyze
payment networks through the lens of network creation games. We iden-
tify betweenness and closeness centrality as central concepts regarding
payment networks. We study the topologies that emerge when players
act selfishly and determine the parameter space in which they constitute
a Nash equilibrium. Moreover, we determine the social optima depending
on the correlation of betweenness and closeness centrality. When possi-
ble, we bound the price of anarchy. We also briefly discuss the price of
stability.
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1 Introduction

1.1 Motivation

Bitcoin [30] and other cryptocurrencies [24, 33, 34] are electrifying the world.
Thanks to a distributed data structure known as the blockchain, cryptocur-
rencies can execute financial transactions without a trusted central authority.
However, every computer participating in a blockchain must exchange, store
and verify each and every transaction, and as such the transaction throughput
of blockchains is embarrassingly low. The Bitcoin blockchain for instance does
not process more than seven transactions per second.

With seven transactions per second, Bitcoin cannot rival established payment
systems such as Visa, WeChatPay, or PayPal. Consequently, various research
groups have proposed a blockchain paradigm shift – payment channels [16, 31,
32]. All payment channels follow the same basic principle: Instead of sending
every transaction to the blockchain, transactions are only exchanged between
the involved parties. If Alice and Bob expect to exchange multiple payments,
they can establish a payment channel. The channel is set up with a blockchain
funding transaction. Once the channel is available, Alice and Bob exchange all
payments directly, by sending each other digitally signed payment messages. If
Bob tries to cheat Alice, Alice can show the signed payment messages as a proof
to the blockchain, using the original funding transaction as security.
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Instead of establishing a payment channel to every other person and com-
pany in the world, thanks to a technique called Hash Time Locked Contracts
(HTLCs) [1, 16, 31], payments can also be sent atomically through a path of
payment channels. More precisely, each payment channel is now an edge in a
payment network, and payments will be routed along a path of payment chan-
nels in the payment network. Such a payment network is called the layer 2 of
the blockchain, the blockchain itself being the layer 1.

The payment channels/networks have many significant advantages over vanilla
blockchains: With payment channels, the transaction throughput becomes un-
limited, as each transaction is only seen by the nodes on the path between sender
and receiver of a payment. This is like sending a packet in the internet instead
of sending every packet to a central server. Solving the throughput problem will
also drastically decrease transaction fees. In addition, payments will be instan-
taneous, as one does not have to wait multiple minutes before the blockchain
verifies a transaction. Payment networks also allow for more privacy as trans-
actions are only seen by the parties involved. On the negative side, to set up
a channel, the channel owner(s) must lock some capital. However, whenever a
payment channel routes a transaction on behalf of other parties, the channel
owner(s) can collect a transaction fee.

Payment networks are currently a hot topic in blockchain research. In prac-
tice, the first payment networks have been deployed, and are being actively
used. Prominent examples are Bitcoin’s Lightning network [15, 31] with more
than 30,000 active channels, or Ethereum’s Raiden network [3].

As Bitcoin’s Lightning network is growing quickly, we need to understand
these newly forming payment networks. Which channels will be created, and
what will the network topology eventually look like? Network creation games [20]
are a perfect tool to understand these questions, since they capture the degra-
dation of the network’s efficiency when participants act selfishly.

In a network creation game, the incentive of a player is to minimize her cost
by choosing to whom she connects. In our model, players weigh the benefits
they receive from using payment channels against the channels’ creation cost,
and selfishly initiate connections to minimize their cost. There are two types of
benefits for each player: (i) the forwarding fees she receives for the transactions
she routed through her channels, (ii) the reduced cost for routing her transactions
through the payment network in comparison to publishing the transactions on
the blockchain (blockchain fee). On the other hand, establishing a channel costs
the blockchain fee. Thus, a player has to balance all these factors to decide which
channels to establish to minimize her cost. Our goal is to gain a meaningful
insight on the network structures that will emerge and evaluate their efficiency,
in comparison to centralized structures designed by a central authority that
previous work has shown to be almost optimal.

1.2 Our Contributions

In this work, we provide a game-theoretic approach to analyze the creation of
blockchain payment networks. Specifically, we adopt betweenness centrality, a
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natural measure for fees a player is expected to receive by forwarding others’
transactions on a path of payment channels. On the other hand, we employ
closeness centrality as an intuitive proxy for the transaction fees encountered
when executing transactions through other players in the network. We reflect
the cost of payment channel creation by associating a price with link creation.
Therefore, we also generalize previous work on network creation games as our
model combines both betweenness and closeness centralities.

Under this model, we study the topologies that emerge when players act
selfishly. A specific network structure is considered a Nash equilibrium when
no player can decrease her cost by unilaterally changing her connections. We
examine various such structures and determine the parameter space in which
they constitute a Nash equilibrium. Moreover, we determine the social optima
depending on the correlation of betweenness and closeness centrality. When pos-
sible, we bound the price of anarchy, the ratio of the social costs of the worst
Nash equilibrium and the social optimum [25], to obtain insight into the effects
of lack of coordination in payment networks when players act selfishly. Further-
more, we briefly discuss the price of stability, the ratio of the social costs of the
best Nash equilibrium and the social optimum [6], specifically concerning the
parameter values that most accurately represent blockchain payment networks.

The omitted proofs can be found in Appendix B.

1.3 Related Work

Various payment channel protocols have been proposed in literature [8,9,16,23,
26, 27, 31, 32], all presenting different solutions on how to create payment chan-
nels. However, our work is independent of the channel construction specifications
and thus applies to all such solutions.

Payment networks have been studied from an algorithmic (not game theo-
retic) viewpoint by Avarikioti et al. [7, 10]. In [7], they examined the optimal
graph structure and fee assignment to maximize the profit of a central author-
ity that creates the payment network and bears the relevant costs and benefits.
Furthermore, in [10], they investigated the online and offline computation of a
capital-efficient payment network for a central authority. In contrast, our work
studies the decentralized payment network design, where the network is created
by multiple participants and not a single authority. This model reflects more
accurately the currently operating payment networks, which are indeed created
by thousands of users rather than a single company, following the decentralized
philosophy of cryptocurrencies like Bitcoin.

Network creation games were originally introduced by Fabrikant et al. [20].
In their game, referred to as sum network creation game, a player unilaterally
creates links to minimize the sum of distances to other players in the network
(closeness centrality). Later, Albers et al. [4] improved the upper bound for the
price of anarchy and also examined a weighted network creation game. While
these works solely focus on a player’s closeness centrality, our model is more
complex and additionally includes another metric, the players’ betweenness cen-
trality that represents the importance of a player in the network.
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In parallel, network creation games were expanded to various settings. The
idea of bilateral link creation was introduced by Corbo and Parkes [14]. Demaine
et al. [17] devise the max game, where players try to minimize their maximum
distance to any other player in the game. Intrinsic properties of peer-to-peer
networks are taken into account in the network creation variation conceived by
Moscibroda et al. [28, 29]. The idea of bounded budget network creation games
was proposed by Ehsani et al. [18]. In bounded budget network creation games,
players have a fixed budget to establish links. Nodes strive to minimize their
stretch, the ratio between the distance of two nodes in a graph, and their direct
distance. Moreover, Àlvarez et al. [5] introduced the celebrity game, where play-
ers try to keep influential nodes within a fixed distance. However, the objectives
in all these games give little insight to the control a player has over a network.
This control is desired by players in blockchain payment networks to maximize
the fees received for routing transactions, in essence their betweenness centrality.

A bounded budget betweenness centrality game was introduced by Bei et
al. [11]. Given a budget to create links, players attempt to maximize their
betweenness centrality. Due to their complexity, betweenness network creation
games yield limited theoretical results, in comparison to those of the sum net-
work creation game, for instance. In contrast to our work, a players closeness
centrality is not taken into account in [11]. Thus, this model is insufficient for
our purpose since it does not consider how strategically connected is a player
that wants to route many transactions through the payment network.

Buechel and Buskens [13] compare betweenness and closeness centralities;
however, not in a network creation game setting, as their notion of stability does
not lead to Nash equilibria. We, on the other hand, study the combination of
betweenness and closeness incentives in a network creation game setting.

2 Preliminaries and Model

In this section, we first introduce the essential background and assumptions
for our payment network creation game, and then we introduce the necessary
notation and the game-theoretic model.

2.1 Payment Networks

Payment channels operate on top of the blockchain (Layer 2) and allow instant
off-chain transactions. Generally, a channel is set up by two parties that deposit
capital in a joint account on the blockchain. The channel can then be used to
make arbitrarily many transactions without committing each transaction to the
blockchain. When opening a channel, the parties pay a blockchain fee and place
capital in the channel. The blockchain fee is the transaction fee to the miner,
paid to have the transaction included in a block and thereby published on the
blockchain. The deposited capital funds future channel transactions and is not
available for other transactions on the blockchain during the channel’s lifetime.
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In our model, we assume a player single-handedly initiates a channel to a sub-
set of other players. Incoming channels are always accepted and once installed,
the channels can be used to send money in both directions (from sender to re-
ceiver, and vice versa). While any player can typically choose the amount to lock
in a channel, we assume that the locked capital placed in all channels is high
enough to be modeled as unlimited. In particular, we assume that all players
are major (large companies, financial institutions etc.) that have thus access to
large amounts of temporary capital. It is natural to assume only major players
to participate in the network creation game. Typically, a market is created when
there is demand for a service. Thus eventually, the payment network will be
dominated by service providers that will individually connect with clients and
act as intermediaries for all transactions. In this work, we only consider the flow
of transactions through these service providers. Therefore, the cost of opening a
channel in our model solely reflects the permanent cost, i.e. the blockchain fee,
and is set to 1 (wlog). Furthermore, since we assume major players only, the
transactions between the players can be considered uniform.

In addition to enabling parties connected by a channel to exchange funds off-
chain, payment channels can also be used to route off-chain transactions between
a sender and receiver pair not directly connected by a channel. Transactions be-
tween the sender and receiver can be routed securely through a path of channels.
Since we assume that all channels are funded with unlimited capital, the channel
funds cannot deplete, and so any path in the payment network between sender
and receiver is viable.

Together, the payment channels form a payment network. In the network,
players receive a payment when transactions are routed through their channels.
This payment is a transaction fee, which is typically proportional to the value
of the routed transaction, to compensate the intermediate node for the loss of
her channel’s capital capacity. However, we consider a fixed fee for all nodes,
independent of the routed value, since we assume unlimited channel capital.

2.2 Formal Model

A payment network can be formally expressed by an unweighted undirected
graph consisting of V nodes, representing the set of players, and E edges, rep-
resenting the set of payment channel between the players.

A payment network game consists of n players V = {0, 1, . . . , n−1}, denoted
by [n]. The strategy of player u expresses the channels she chooses to open and
is denoted by su, and the set Su = 2[n]−{u} defines u’s strategy space. We denote
by G[s] the underlying undirected graph of G0[s] =

(
[n],

⋃
u∈[n]{u} × su

)
, where

s = (s0, . . . , sn−1) ∈ S0 × · · · × Sn−1 is a strategy combination. Note that while
a channel can possibly be created by both endpoints, this will never be the case
in a Nash equilibrium.

Betweenness centrality. The fees received by a player for providing gateway
services to other players’ transactions are modeled by her betweenness centrality.
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Betweenness centrality was first introduced as a measure of a player’s importance
in a social network by Freeman et al. [21]. According to [21], the betweenness

centrality of a player u in a graph G(V,E) is
∑

s,r∈V
s6=r 6=u,m(s,r)>0

mu(s, r)

m(s, r)
, where

mu(s, r) is the number of shortest paths between sender s and receiver r that
route through player u and m(s, r) is the total number of shortest paths between
s and r. Additionally, s 6= r 6= u indicates that s 6= r, s 6= u and r 6= u.
Intuitively, the betweenness centrality of player u is a measure of the expected
number of sender and receiver pairs that would choose to route their transactions
through her in a payment network. Providing an insight into the transaction fees
a player is expected to receive, the betweenness centrality lends itself to reflect
the motivation of a player in a payment network to maximize the payments
secured through providing transaction gateway services.

However, in our model, the betweenness of player u is measured as follows:

betweennessu(s) = (n− 1)(n− 2)−
∑

s,r∈[n]:
s6=r 6=u,m(s,r)>0

mu(s, r)

m(s, r)
.

We subtract u’s betweenness centrality, as defined by Freeman et al. [21], from
her maximum possible betweenness centrality to ensure that the social cost is
always positive - avoiding cases where price of anarchy is undefined.

Closeness centrality. Furthermore, we model the fees encountered by a player
when having her transactions routed through the network with her closeness
centrality. Closeness centrality measures the sum of distances of player u to all
other players and is given by

closenessu(s) =
∑

r∈[n]−u

(
dG[s](u, r)− 1

)
,

for a player u, where dG[s](u, r) is the distance between u and r in the graph
G[s]. With the transaction fees fixed per edge in our model, the distance to a
player r estimates the costs encountered by player u when sending a transaction
to player r. Therefore, the sum of distances to all other players is a natural proxy
for the fees u faces for making transactions when assuming uniform transactions.

Thus, the combination of betweenness and closeness centralities accurately
encapsulates the incentives inherent to players in a blockchain payment network.

Cost. The cost of player u under the strategy combination s is costu(s) =
|su|+b·betweennessu(s)+c·closenessu(s), where b ≥ 0 is the betweenness weight
and c > 0 the closeness weight. Letting c > 0 ensures that the graph is always
connected, as a player’s cost is infinite in a disconnected graph. Additionally, the
model assumes the same price for all nodes and embeds this into coefficients b
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and c. While this does not exactly encapsulate reality, it is a reasonable assump-
tion. Different paths offer similar services to payers. In such a setting, Bertrand
competition [12] suggests that competition will drive the prices from different
players to be within a close region of each other.

Social optimum. The objective of player u is to minimize her cost,minsu costu(s).
The social cost is the sum off all players’ costs, cost(s) =

∑
u∈[n] costu(s). Thus,

the social optimum is mins cost(s).

3 Payment Network Creation Game

To gain an insight into the efficiency of emerging topologies when players act
selfishly, we will first analyze the social optimum for our model. After studying
if and when prominent graphs are Nash equilibria, we conclude by bounding the
price of anarchy and the price of stability.

3.1 Social Optimum

By the definition of the cost function, the social cost is

cost(s) =
∑
u∈[n]

costu(s) = |E(G)|+ b
∑
u∈[n]

betweennessu(s)+ c
∑
u∈[n]

closenessu(s),

for any graph where no channel is paid by both endpoints. This constraint is met
for all Nash equilibria. To lower bound the social cost, we will first simplify the
social cost expression. Lemma 1 shows how to express the social cost directly
in terms of the number of edges and the sum of the players’ closeness centrality
costs, facilitating further analysis.

Lemma 1. The social cost in G is given by cost(s) = |E(G)|+ b ·n · (n− 1)(n−
2) + (c− b) ·

∑
u∈[n]

closenessu(s).

The distance of a vertex v of a connected graphG is d(v) :=
∑

u∈[n]−v dG(v, u).
The distance of a connected graph G is d(G) :=

∑
v∈[n] d(v)/2. If G is not con-

nected, then d(v) =∞ for any v, and d(G) =∞.

Lemma 2 (Theorem 2.3 [19]). If G is a connected graph with n vertices and
k edges then n · (n− 1) ≤ d(G) + k ≤ 1

6 ·
(
n3 − 5 · n− 6

)
.

Lemma 2 provides bounds for the distance of a graph G,

d(G) =
1

2

∑
u∈[n]

∑
r∈[n]−u

dG(u, r)

which is useful for finding the social optimum for our game.
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Fig. 1: Parameter map for social optimum.

In [19] Lemma 2 is proven and stated
that the path graph achieves the up-
per bound; maximizes the distance
term. This can be used to find the
social optimum. Dependent on the
weights b and c, the social optimum
for our payment network creation
game is given in Theorem 1, and il-
lustrated in Figure 1.

Theorem 1. The social optimum is a complete graph for c > 1
2 +b, a star graph

for b ≤ c ≤ 1
2 + b and a path graph for c < b.

In areas most accurately describing payment networks, we expect the weights
b and c to be smaller than the cost of channel creation and close to each other.
For these cases, we observe the star graph is the social optimum.

3.2 Nash Equilibria

To find a Nash equilibrium, one could follow a naive approach: start with a fixed
graph structure and then continuously compute a player’s best response in the
game. However, Theorem 2 shows that it is NP-hard to calculate a player’s best
response.

Theorem 2. Given a strategy s ∈ S0× · · · ×Sn−1 and u ∈ [n], it is NP-hard to
computed the best response of u.

Therefore, with this in mind, we analyze prominent graph topologies theo-
retically, to see if and when they are Nash equilibria in our game. The results are
illustrated in Figure 2. However, complementary to the theoretical analysis we
also run a simulation to get insights into emerging graph topologies for a small
number of players.

Complete Graph. For large values of c the complete graph is the only Nash
equilibrium as stated in Theorem 3. Additionally, the complete graph is also a
Nash equilibrium for c = 1, but it is not necessarily the only one. However, for
small values of c, which are the values we expect to encounter in a payment
network creation game, the complete graph is not a Nash equilibrium, as stated
in Theorem 4.

Theorem 3. For c > 1, the only Nash equilibrium is the complete graph.

Theorem 4. For c < 1 and n ≥ 3, the complete graph is never a Nash equilib-
rium.
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(a) complete graph (b) star graph (n ≥ 4) (c) biclique

Fig. 2: Parameter map for prominent graphs. In Figure 2c, r and s are the subset sizes
(3 ≤ r ≤ s). With α = s·(s−1)

r·(s−2)
and β = 1

s−r+1

(
s·(s−1)

r
− (r−2)(r−1)

s+1

)
, (γ, δ) is the

intersection between 1 = s
r
b+ s+r−3

s−1
c and 1 = min {α, β} · b+ c.

Figure 2a visualizes the combination of these results, i.e., when the complete
graph is a Nash equilibrium in our game. We observe that for some weight combi-
nations the complete graph is both the social optimum and a Nash equilibrium.
However, most payment networks are not expected to fall into this area of the
parameter space.

Path Graph. While the path graph is the social optimum for a significant area
of the parameter space, we show it can only be a Nash equilibrium for small sets
of players. For n = 3, the path graph is a Nash equilibrium for all c ≤ 1, as it is
the only possible connected graph that is not the complete graph.

Proposition 1. For n = 4, the path graph is a Nash equilibrium if and only if
1 ≤ b+ 2 · c.

Proposition 2. For n = 5, the path graph is a Nash equilibrium if and only if
1 ≤ 2 · b+ 4 · c.

Propositions 1 and 2 identify when the path graph is a Nash equilibrium
for networks with four and five players respectively. These bounds partly over-
lap with areas in which the path graph is the social optimum. While this par-
tial correspondence between the Nash equilibrium and social optimum appears
promising for the coordination of our game, Theorem 5 suggests to the contrary.

Theorem 5. For n ≥ 6, the path graph is never a Nash equilibrium.

Hence, the path graph is not expected to be a Nash equilibrium for payment
networks that typically consist of many nodes.
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Circle Graph. The results we find for the circle graph are similar to those for
the path graph. For small values of n, the circle graph can be a Nash equilibrium
depending on the weights b and c. The circle graph and the complete graph are
the same for n = 3. Thus, for n = 3 the circle graph is a Nash equilibrium if and
only if c ≥ 1.

Proposition 3. For n = 4, the circle graph is a Nash equilibrium if and only if
c ≤ 1 ≤ b+ 2 · c.

Proposition 4. For n = 5, the circle graph is a Nash equilibrium if and only if
b+ c ≤ 1 ≤ 2 · b+ 4 · c.

Propositions 3 and 4 show that for small n, the circle graph can be a Nash
equilibrium depending on the weights b and c. However, for large n the circle
graph is never a Nash equilibrium, as stated in Theorem 6.

Theorem 6. There exists a N > 0, such that for all n ≥ N the circle graph is
never a Nash equilibrium.

We note that simulations suggest that for n ≥ 6 the circle graph is never
a Nash equilibrium. Parameter sweeps indicating that N = 6 can be found in
Appendix A.3.

Star Graph. The star graph is the social optimum for a significant part of our
parameter space. In a star graph the player in the center has minimal closeness
and betweenness costs; all other players have maximal betweenness cost. While
this does not directly appear to be a stable network, Theorem 7 suggests that
the star graph is a Nash equilibrium for smaller values of b and c. These results
are depicted in Figure 2b.

Theorem 7. For n ≥ 4, the star graph is always a Nash equilibrium if and only
if 0 ≤ 1− n−3

2 b− c.

Proof. To show that the star is always a Nash equilibrium for n ≥ 4 and 0 ≤ 1−
n−3
2 b− c, we will consider a star graph consisting of n players V = {0, 1, . . . , n−

1}. Without loss of generality we assume that player 0 is the center of the star.
No player in the star graph has an incentive to remove an edge, as this would

lead to infinite cost. Thus, player 0 has no incentive to change strategy, as she
is connected to everyone.

Next we consider star graphs where all links are initiated by player 0 and
star graphs where at least one link is initiated by another player separately.

If all links are initiated by player 0, players 1, 2, . . . , n − 1 are all in an
equivalent position and it is therefore sufficient to solely consider player 1. Player
1 would only add links, if this leads to a decrease in her cost. Initiating an edge
to player 0 would only increase her cost. Additionally, for the remaining n − 2
players, it only matters to how many player 1 connects. The change in cost when
adding m, where 1 ≤ m ≤ n− 2, edges is given by ∆cost1(add m links) = m−
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m · (m− 1)

2
b−m·c. Thus, player 1 will change strategy if∆cost1(add m links) <

0. The change in cost is minimized for m = n− 2.
In star graphs where at least one player other than 0 initiates a link, players

that have no outgoing links are in the same position as those analyzed previously.
Thus, it suffices to consider player i, where i 6= 0, that has one outgoing link.
In addition to only initiating new links, player i can remove the link to player 0
and initiates l, where 1 ≤ l ≤ n− 2, new links. The change in cost is then given

as ∆costi(add l links) = (l− 1)− l · (l − 1)

2
b− (l− 1) · c. However, this leads to

more restrictive bounds and there is no need for players other than player 0 to
have outgoing links.

Thus, the star is a Nash equilibrium if and only if 0 ≤ 1− n−3
2 b− c. ut

We note that the areas where the star is both a Nash equilibrium and the
social optimum overlap partially.

Complete Bipartite Graph. The star graph is a complete bipartite graph
where one group has size one. In this section, we analyze more general complete
bipartite graphs or bicliques Kr,s, where r is the size of the smaller subset and
s is the size of the larger subset. In a complete bipartite graph, every node from
one subset is connected to all nodes from the other subset.

Theorem 8. The complete bipartite graph Kr,s with 3 ≤ r ≤ s is stable if and
only if s−2

r+1b+ c ≤ 1 ≤ min
{

s
r b+

s+r−3
s−1 c,min {α, β} · b+ c

}
, where α = s·(s−1)

r·(s−2)

and β = 1
s−r+1

(
s·(s−1)

r − (r−2)(r−1)
s+1

)
.

Proof. Additional links can only be created within a subset in a complete bipar-
tite graph. Similarly to adding links in a star graph, the change in cost when

adding m links is given by ∆costu(add m links) = m − m · (m− 1)

l + 1
b − m · c,

where l ∈ {r, s} is the size of the subset not including the player.
A player changes strategy when∆costu(add m links) < 0. The change in cost

is minimized when m is maximized and l = r. m can therefore be s− 1 at most.
Thus, the upper bound for Kr,s being a Nash equilibrium is 1 ≥ s− 2

r + 1
b+ c.

Players in the subset of size r, benefit more from a link to the other subset,
as their betweenness cost is smaller. Thus, players from the larger subset with
outgoing links would change strategy sooner. In the case where the subsets are
of equal size, the link direction does not matter. Hence, to find a lower bound
for b and c we only consider complete bipartite graphs, in which all links are
established from the smaller subset, as seen in Figure 3a. If players from the
larger subset woul Without loss of generality we will only consider player u in
the following analysis. It is not reasonable for player u to remove all her links
without adding any new links, as her cost would become infinite. Depending on
the other parameters, it might be more optimal to remove all her previous links
and only connect to one player in her subset (Figure 3b), connect to one player in
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her subset and one player from the other subset (Figure 3c), or to remove all her
previous links and instead connect to all other players in her subset (Figure 3d).
When player u changes to strategy s̃1, seen in Figure 3b the change in cost is

u

(a) strategy s

u

(b) strategy s̃1

u

(c) strategy s̃2

u

(d) strategy s̃3

Fig. 3: Strategy deviations of player u.

as follows:

∆costu(s to s̃1) =− (s− 1) +
s · (s− 1)

r
b+ (s+ r − 3) · c

as player u initiates s−1 less links than before - losing all her previous between-
ness. Additionally, she is one edge further away from all other players except for
the one she connects to directly. Thus, the above strategy is less preferable than
the complete bipartite graph for player u, if

1 ≤ s

r
b+

s+ r − 3

s− 1
c.

Player u’s change to strategy s̃2 (Figure 3c) leads to s − 2 less links initiated
by her. The player is further away from s− 1 players from the other subset and
closer to one in her own. All transaction-routing potential is lost. Therefore, the
change in cost is given by

∆costu(s to s̃2) =2− s+
(
s · (s− 1)

r

)
b+ (s− 2) · c.

Hence, for this strategy to be less preferable than the complete bipartite graph,

1 ≤
(
s · (s− 1)

r · (s− 2)

)
b+ c = α · b+ c.

When severing all previous links and connecting to all players in her subset
instead, strategy s̃3 (Figure 3d), player u builds s− r+ 1 less links than before.
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Furthermore, she is closer to players previously in her own subset and further
away from the rest. While player u can now transmit transactions of players
previously in her own subset, she is no longer a preferable intermediary for
players previously in the other subset. Therefore, the change in cost is given by

∆costu(s to s̃3) =r − s+ 1 +

(
s · (s− 1)

r
− (r − 1)(r − 2)

s+ 1

)
b+ (s− r + 1) · c.

Hence, for this strategy to be less preferable than the complete bipartite graph
for player u,

1 ≤ 1

(s− r + 1)

(
s · (s− 1)

r
− (r − 1)(r − 2)

s+ 1

)
b+ c = β · b+ c.

To summarize, the complete bipartite graph Kr,s is a Nash equilibrium for

s− 2

r + 1
b+ c ≤ 1 ≤ min

{
s

r
b+

s+ r − 3

s− 1
c,min {α, β} · b+ c

}
.

ut
The parameter map for the complete bipartite graph is drawn in Figure 2c.

There (γ, δ) is the intersection between 1 = s
r b+

s+r−3
s−1 c and 1 = min {α, β}·b+c.

Simulation. To better understand the behaviour of a player in our payment
network creation game, we implement a simulation of the game [2]. Our simula-
tion enumerates all Nash equilibria for a given number of players n, as well as the
weights for the betweenness and closeness costs. However, this is only feasible
for small n. Parameter sweeps for the weights b and c can also be performed to
see when a given topology is a Nash equilibrium. Some parameter sweeps for
topologies previously analyzed can be found in Appendix A. Finally, starting
from an initial graph the progression of the game can be simulated.

3.3 Price of Anarchy

The ratio between the social optimum and the worst Nash equilibrium is the
price of anarchy (PoA), formally,

PoA =
maxs∈N cost(s)
mins∈S cost(s)

,

here S is the set of all strategies and N is the set of strategies that are Nash
equilibria.

The price of anarchy provides an insight to the effects of lack of coordina-
tion, i.e. measures the performance degradation of the system when players act
selfishly in comparison to central coordination. When the price of anarchy is
low, selfish actors do not heavily degrade network efficiency. In contrast, a high
price of anarchy indicates that network formation by a central authority would
significantly increase efficiency.

For c > 1, we can determine the price of anarchy exactly, as we established
both the social optimum and the (unique) Nash equilibria for c > 1.
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Corollary 1. For c > 1 and c > 1
2 + b, the price of anarchy is PoA = 1.

Corollary 2. For c > 1 and b ≤ c ≤ 1
2 + b, the price of anarchy is

PoA =

(
1
2 + (n− 2) · b

)
· n

1 + (c+ b · (n− 1))(n− 2)
.

Corollary 3. For 1 < c < b , the price of anarchy is

PoA =

(
1
2 + (n− 2) · b

)
· n

1 +
(
2
3b+

1
3c
)
· n · (n− 2)

.

Combining the results of Corollary 1, 2 and 3 allows us to upper bound the
price of anarchy to a constant for c > 1, as stated in in Corollary 4. This upper
bound is asymptotically tight, as the price of anarchy is always greater or equal
to one (hence at least constant) by definition.

Corollary 4. For c > 1, the price of anarchy is PoA = O(1).

For small b and c we can also upper bound the price of anarchy as follows:

Theorem 9. For c+ b < 1
n2 , the price of anarchy is PoA = O(1).

Finally, for c+ b ≥ 1
n2 and c < 1, we show an O(n) upper bound for the price

of anarchy.

Theorem 10. For c+ b ≥ 1
n2 and c < 1, the price of anarchy is PoA = O(n).

3.4 Price of Stability

The price of stability (PoS), a close notion to price of anarchy, is defined as the
ratio between the social optimum and the best Nash equilibrium,

PoS =
mins∈N cost(s)
mins∈S cost(s)

,

where S is the set of all strategies and N is the set of strategies that are Nash
equilibria. The price of stability expresses the loss in network performance in
stable systems in comparison to those designed by a central performance. Corol-
lary 5 gives insight into the price of stability in regions of the parameter space
previously discussed in the context of the price of anarchy.

Corollary 5. For c > 1 and b+ c < 1
n2 , the price of stability PoS = O(1).

However, we expect blockchain payment networks to fall into the remaining
area, where c + b ≥ 1

n2 and c < 1. In particular, considering the underlying
uniform transaction scenario and the fixed blockchain fee equal to one (wlog), a
competitive transaction fee would be 1

n . Thus, an appropriate allocation for the
weights is b = 1

2n and c = 1
n , as the betweenness term counts each sender and

receiver pair twice. For these weights the star is the social optimum (Theorem
1), as well as a Nash equilibrium (Theorem 7). Hence, the price of stability for
payment networks is one; indicating that an optimal payment network is stable in
a game with selfish players. Thus, payment networks can be stable and efficient.
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4 Conclusion

We introduced a game-theoretic model to encapsulate the creation of payment
networks. To this end, we generalized previous work, as our model is more com-
plex and demands a combination of betweenness and closeness centralities that
have thus far only been studied independently in network creation games.

First, we identified the social optimum for the entire parameter space of
our game. Depending on the weights placed on the betweenness and closeness
centralities either the complete graph, the star graph or the path graph is the
social optimum. In the area of the parameter space that most accurately reflects
payment networks, we found the star graph to be the social optimum.

Next, we examined the space of possible Nash equilibria. After establishing
that finding the best response of a player is NP-hard, we analyzed prominent
graphs and determined if and when they constitute a Nash equilibrium. We
showed that the complete graph is the only Nash equilibrium if players place a
large weight on their closeness centrality; reflecting payment channels in which
players execute many transactions or value privacy highly. On the other hand,
both the path and circle graph are Nash equilibria only for small number of
players and thus are not expected to emerge as stable structures in payment
networks. On the contrary, the star graph emerges as a Nash equilibrium for the
areas of our parameter space most accurately representing payment networks.
In addition, we observed that depending on the size of the subsets, the complete
bipartite graph is also a Nash equilibrium in similar regions of the parameter
space as the star graph.

Last, combining our results, we bounded the price of anarchy for a large part
of the parameter space. In particular, we proved that when the closeness cen-
trality weight is high, meaning that the players execute transactions frequently
or demand privacy, the price of anarchy is constant; indicating little loss in net-
work performance for selfish players. On the other hand, for small weight on the
closeness centrality, we showed an O(n) upper bound on the price of anarchy.
Nevertheless, the price of stability in payment networks is equal to one, since the
star is both the social optimum and a Nash equilibrium for suitable parameters;
demonstrating that blockchain payment networks can indeed be both stable and
efficient, when forming more centralized network structures.
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A Parameter Sweeps

We show some parameter sweeps for the weights b and c generated by our simu-
lation. These show when some of the prominent graphs analyzed in Chapter 3.2
are Nash equilibria.

A.1 Complete Graph

Figure 4 shows the simulation results for the complete graph. Here the underlying
assumption was made that lower ID players connected to all higher ID players.
However, independent of this assumption the simulation yields the same results.

(a) n = 3 (b) n = 8

Fig. 4: Parameter map for complete graph.

A.2 Path Graph

Simulations done for the path graph are shown in Figure 5. The assignment of
outgoing edges is such that the least restrictive bounds are achieved.

A.3 Circle Graph

Simulation results for the circle graph are shown in Figure 6. Here all players
have exactly one outgoing link, as the bounds for this case are less restrictive
than if any player would have two outgoing links.

For n = 4 and n = 5, the simulation matches the theory. Additionally,
the simulation also suggested that for n ≥ 6 the circle graph is never a Nash
equilibrium as indicated by the results in Figures 6c and 6d.
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(a) n = 4 (b) n = 5

(c) n = 6 (d) n = 7

Fig. 5: Parameter map for path graph.

A.4 Star Graph

In Figure 7 we show when the star is a Nash equilibrium. For the simulation one
player connects to everyone else. Other possible star graphs have more restrictive
bounds on b and c.

A.5 Complete Bipartite Graph

Figure 8 shows when the complete bipartite graph is Nash equilibrium for the
presented parameters. The simulation was done for players in the smaller subset
having all the outgoing links, as this case leads to less restrictive bounds for b
and c.
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(a) n = 4 (b) n = 5

(c) n = 6 (d) n = 7

Fig. 6: Parameter map for circle graph.

B Proofs

B.1 Social Optimum

Lemma 3 (Theorem 1 [22]). The average betweenness B(G) in a connected
graph G can be expressed as: B(G) = (n−1)(l(G)−1), where l(G) is the average
distance in G.

Lemma 3 is proven in [22] and relates the average betweenness and distance in
a connected graph. We take advantage of Lemma 3 to simplify the social cost
expression.
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(a) n = 4 (b) n = 7

Fig. 7: Parameter map for star graph.

Lemma 1. The social cost in G is given by cost(s) = |E(G)|+ b ·n · (n− 1)(n−
2) + (c− b) ·

∑
u∈[n]

closenessu(s).

Proof. According to Lemma 3 the social cost can be expressed as follows for all
b ≥ 0 and c > 0.

cost(s) =|E(G)|+ b
∑
u∈[n]

betweenness(u) + c
∑
u∈[n]

closeness(u)

=|E(G)|+ b
∑
u∈[n]

(n− 1)(n− 2)−
∑

s,r∈[n]:
s6=r 6=u,
m(s,r)>0

mu(s, r)

m(s, r)


+ c

∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r)− 1

)
=|E(G)|+ b · n · (n− 1)(n− 2)− b · n ·B(G) + c · n · (n− 1)(l(G)− 1)

=|E(G)|+ b · n · (n− 1)(n− 2) + (c− b) · n · (n− 1)(l(G)− 1)

=|E(G)|+ b · n · (n− 1)(n− 2) + (c− b) ·
∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r)− 1

)
ut

Theorem 1. The social optimum is a complete graph for c > 1
2 +b, a star graph

for b ≤ c ≤ 1
2 + b and a path graph for c < b.
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(a) n = 6, r = 3, s = 3 (b) n = 7, r = 3, s = 4

(c) n = 8, r = 3, s = 5 (d) n = 8, r = 4, s = 4

Fig. 8: Parameter map for complete bipartite graph.

Proof. Using Lemma 1 we can lower bound the social cost for c ≥ b as follows:

cost(s) =|E(G)|+ b · n · (n− 1)(n− 2) + (c− b)︸ ︷︷ ︸
≥0

∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r)− 1

)
≥|E(G)|+ b · n · (n− 1)(n− 2) + (c− b)(n · (n− 1)− 2|E(G)|)
=(1− 2 · (c− b)) · |E(G)|+ b · n · (n− 1)(n− 2) + (c− b)(n · (n− 1))

since every pair of nodes that is not connected by an edge is at least distance
2 apart [20]. This lower bound is achieved by any graph with diameter at most 2.
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It follows that for c > 1
2 + b the social optimum is a complete graph, maximizing

|E|, and for b ≤ c ≤ 1
2 + b the social optimum is a star, minimizing |E|.

To find the social optimum for c < b, we rewrite the social cost as

cost(s) =|E(G)|+ b · n · (n− 1)(n− 2)− (b− c) ·
∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r)− 1

)
=|E(G)| − 2 · (b− c) · d(G) + b · n · (n− 1)(n− 2) + (b− c) · n · (n− 1)

For a connected graph the social cost is then minimized for a tree, as |E(H)| −
a · d(H) > |E(G)| − a · d(G) if G is a subgraph of H and a > 0. For any tree, the
number of edges is n− 1. Using Lemma 2, we get that

cost(s) =|E(G)|+ b · n · (n− 1)(n− 2)− (b− c)
∑
u∈[n]

∑
r∈[n]−u

(
dG[s](u, r)− 1

)
≥
(
1 +

(
2

3
b+

1

3
c

)
n · (n− 2)

)
(n− 1)

is a lower bound for the social cost which is achieved by a path graph. ut

B.2 Hardness of Finding the Best Response

Theorem 2. Given a strategy s ∈ S0× · · · ×Sn−1 and u ∈ [n], it is NP-hard to
computed the best response of u.

Proof. The following proof is adapted from Proposition 1 in [20].
Given the configuration of the rest of the graph, player u has to compute

her best response; a subset of players to build channels to such that her cost is
minimized. For b = 0 and 0.5 < c < 1 and no incoming links from the rest of the
graph, we know that the diameter of G can be at most 2. Additionally, making
more than the minimum number of required links, only improves the distance
term by c, which is strictly smaller than the cost of establishing a link. Thus,
u’s strategy is a dominating set for the rest of the graph.

The cost of u is minimized when the size of the subset is minimized. The
minimum size dominating set corresponds to u’s best response. Hence, it is NP-
hard to compute a player’s best response by reduction from the dominating set.

ut

B.3 Complete graph

Theorem 3. For c > 1, the only Nash equilibrium is the complete graph.

Proof. The addition of an edge by a player never increases her betweenness cost.
Thus, by the definition of the cost function any Nash equilibrium cannot be
missing any edges whose addition would reduce a players closeness by more than
1, the cost of building an edge. As c > 1, no edge can be missing in the graph
and the only Nash equilibrium is the complete graph. ut
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Theorem 4. For c < 1 and n ≥ 3, the complete graph is never a Nash equilib-
rium.

Proof. In a complete graph the removal of an edge by a player does not change
her betweenness cost and her closeness cost is increased by c. Thus, the cost of a
player would decrease when removing one edge. Therefore, the complete graph
is not a Nash equilibrium for c < 1. ut

B.4 Path Graph

Proposition 1. For n = 4, the path graph is a Nash equilibrium if and only if
1 ≤ b+ 2 · c.

Proof. In a game with four players, a path graph with outgoing links from the
endpoints is never a Nash equilibrium. Such an endpoint could simply reduce her
cost by c through exchanging her current channel with a channel to the player
currently two edges away.

In the remaining path graphs, all channels are initiated by the central nodes.
A player can never increase her cost by removing or exchanging edges. The
minimum change of cost can be achieved by an endpoint initiating a channel to
the other endpoint. This change in cost is given by

∆cost(add 1 link) = 1− b− 2 · c.

We follow that for n = 4, the path graph is a Nash equilibrium for 1 ≤ b+ 2 · c.
ut

Proposition 2. For n = 5, the path graph is a Nash equilibrium if and only if
1 ≤ 2 · b+ 4 · c.

Proof. As in the case with four players, a path graph with five nodes in which the
endpoints initiate channels is never a Nash equilibrium. For instance, an endpoint
could reduce her cost by 2 · c through connecting to the player currently three
edges away instead.

Additionally, in a path graph with five players, the players neighboring the
endpoints cannot initiate channels to the central node in a Nash equilibrium.
Replacing such a link with a link to the other neighbor of the central node
would lead to a cost reduction of c.

Thus, it only remains to consider a path graph with channels initiated as
show in Figure 9.

Fig. 9: Path graph.
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Here, the minimum change in cost is achieved by an endpoint initiating a
new channel to the player four edges away. We have

∆cost(add 1 link) = 1− 2 · b− 4 · c.

The path graph with five nodes is a Nash equilibrium for 1 ≤ 2 · b+ 4 · c. ut

Theorem 5. For n ≥ 6, the path graph is never a Nash equilibrium.

Proof. To show that the path graph is never a Nash equilibrium for n ≥ 6, we
will show that at least one player in a path graph consisting of more than six
players can always reduce her cost by changing strategy.

In a path graph with at least six players, at least one player u has an outgoing
edge to a player v at least two steps from the end of the path on the opposite side
of player u. This is illustrated in Figure 10a and we consider this to be strategy
s. In this case it is always more beneficial for player u to connect to player w
instead of player v. Let’s refer to this strategy as strategy s̃ (Figure 10b).

· · · u v w · · ·

(a) strategy s

· · · u v w · · ·

(b) strategy s̃

Fig. 10: Strategy deviation of player 1.

The change in cost for this strategy is given as

∆costu(s to s̃) = −c · (m− 2),

where m is the number of edges player v is away from the endpoint on the
opposite side u. Thus, the change in cost is negative and the path graph cannot
be a Nash equilibrium for n ≥ 6. ut

B.5 Circle Graph

Proposition 3. For n = 4, the circle graph is a Nash equilibrium if and only if
c ≤ 1 ≤ b+ 2 · c.

Proof. Adding a link to the only player one is not directly connected to, does not
decrease a player’s betweenness cost. It is not beneficial for a player to initiate
an additional link, if the closeness cost reduction is not bigger than the link cost
of one. Thus, a player does not add an additional edge for

c ≤ 1.
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A player’s change in cost when removing a single link is given by

∆costu(remove 1 link) =− 1 + b+ 2 · c.

Hence, a player cannot reduce her cost through the removal of a single link if
1 ≤ b+ 2 · c.

Additionally, a player with two outgoing links will never eliminate both with-
out adding another link. Her cost would be infinite otherwise. Exchanging a single
link with a new link to the player one was not previously connected to, never
yields a negative change in cost and is therefore never a player’s best response.

Finally, the change in cost when removing two links and adding a new link
to the player one was not previously connected to is given by

∆costu(remove 2 & add 1 link) =− 1 + b+ c,

but this bound is more restrictive than the previous one, and there is no need
for a player to have more than one outgoing edge.

Thus, the circle graph with n = 4 is a Nash equilibrium for c ≤ 1 ≤ b+ 2 · c.
ut

Proposition 4. For n = 5, the circle graph is a Nash equilibrium if and only if
b+ c ≤ 1 ≤ 2 · b+ 4 · c.

Proof. The change in cost for the addition of links to the players, a player was
not directly connected to previously, is given by

∆costu(add m links) =m−m · b−m · c,

where m ∈ {1, 2}. Thus, a player can reduce her cost by adding more links when
1 ≤ b+ c.

If a player in the circle graph removes one outgoing link the change in cost is

∆costu(remove 1 link) =− 1 + 2 · b+ 4 · c.

A player with an outgoing link benefits from the removal if 1 ≥ 2 · b+ 4 · c. On
the other hand, a player with two outgoing edges will never remove both links
without adding a new link as the graph would become disconnected otherwise.
Additionally, she never benefits more from exchanging links as the change in
cost is non-negative. When replacing both her links by a new link, the change
in cost is

∆costu(remove 2 & add 1 link) =− 1 + 2 · b+ 2 · c.

However, this leads to a more restrictive bound than just removing one link and
no player in a circle graph needs more than one outgoing link.

We have shown that for n = 5 the circle graph is a Nash equilibrium if and
only if

b+ c ≤ 1 ≤ 2 · b+ 4 · c.

ut
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Theorem 6. There exists a N > 0, such that for all n ≥ N the circle graph is
never a Nash equilibrium.

Proof. We will show that any player with one outgoing edge in a circle graph
with n ≥ N players, has an incentive to change strategy. Thus, the circle graph
cannot be a Nash equilibrium.

1st quadrant4th quadrant

3rd quadrant 2nd quadrant

0

1

⌊
n
2

⌋

n− 1

(a) strategy s

1st quadrant4th quadrant

3rd quadrant 2nd quadrant

0

1

⌊
n
2

⌋

n− 1

(b) strategy s̃

Fig. 11: Strategy change of player 0.

Consider the circle graph in Figure 11a. Without loss of generality, assume
that player 0 has one outgoing edge to player 1. As the equations for 0’s be-
tweenness and closeness differ for n even or odd, we will use asymptotic notation
throughout the following analysis.

In the circle graph (strategy s), the betweenness of 0 is

betweenness0(s) =
3

4
· n2 + o

(
n2
)

and the 0’s closeness is

closeness0(s) =
1

4
· n2 + o

(
n2
)
.

Now, player 0 removes the link to player 1 and initiates a new link to player⌊
n
2

⌋
, seen in Figure 11b. We will refer to this strategy as s̃. The first part of

0’s betweenness cost reduction comes from the shortest paths of players in the
1st and 2nd quadrant to the 4th quadrant, as well as the other way around;
the quadrants are as shown in Figure 11b. These shortest paths go through the
shortcut and subtract

2 ·
(n
2
+ o(n)

)
·
(n
4
+ o(n)

)
=
n2

4
+ o

(
n2
)
,
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from 0’s betweenness cost. The second part stems from nodes in the 1st and 3rd

quadrant using node 0 as a gateway in the cycle. We have a further betweenness
cost reduction of

1

4
·
(n
2

)2
+ o

(
n2
)
=
n2

16
+ o

(
n2
)
.

Thus, the betweenness of 0 with strategy s̃ is at most

betweenness0(s̃) = n2 − n2

4
− n2

16
+ o

(
n2
)
=

11

16
· n2 + o

(
n2
)
.

The closeness of player 0 to players in the 3rd and 4th quadrant is

1

4
·
(n
2

)2
+ o

(
n2
)
=
n2

16
+ o

(
n2
)
,

and to players in the 1st and 2nd quadrant 0’s closeness is

1

2
·
(n
2

)2
+ o

(
n2
)
=
n2

8
+ o

(
n2
)
.

Therefore, 0’s closeness is

closeness0(s̃) =
n2

16
+
n2

8
+ o

(
n2
)
=

3

16
· n2 + o

(
n2
)
.

Player 0’s change in cost is

∆costu(s to s̃) =
(
11

16
n2 − 3

4
n2 + o

(
n2
))
· b+

(
3

16
n2 − 1

4
n2 + o

(
n2
))
· c

=−
(

1

16
n2 + o

(
n2
))

(b+ c).

As player 0 would choose strategy s̃ over strategy s for ∆costu(s to s̃) < 0,
there exists a N > 0, such that for n ≥ N player the circle graph is never a Nash
equilibrium. ut

B.6 Price of Anarchy

Corollary 1. For c > 1 and c > 1
2 + b, the price of anarchy is PoA = 1.

Proof. The only Nash equilibrium for c > 1 is the complete graph as stated by
Theorem 3. As the social optimum for c > 1

2 + b is also the complete graph
(Theorem 1), the price of anarchy is

PoA = 1,

for c > 1 and c > 1
2 + b. ut
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Corollary 2. For c > 1 and b ≤ c ≤ 1
2 + b, the price of anarchy is

PoA =

(
1
2 + (n− 2) · b

)
· n

1 + (c+ b · (n− 1))(n− 2)
.

Proof. For c > 1 and b ≤ c ≤ 1
2 + b the only Nash equilibrium is the complete

graph (Theorem 3) and according to Theorem 1, the social optimum is the star
graph. Thus, the price of anarchy is given by

PoA =
cost(complete graph)

cost(star graph)

=

(
1
2 + (n− 2) · b

)
(n− 1) · n

(1− 2(c− b) + (c− b) · n+ b · (n− 2) · n)(n− 1)

=
(
(
1
2 + (n− 2) · b

)
· n

1 + (c+ b · (n− 1))(n− 2)
.

ut

Corollary 3. For 1 < c < b , the price of anarchy is

PoA =

(
1
2 + (n− 2) · b

)
· n

1 +
(
2
3b+

1
3c
)
· n · (n− 2)

.

Proof. For 1 < c < b the only Nash equilibrium is the complete graph as stated
in Theorem 3 and the social optimum is a path graph (Theorem 1). The price
of anarchy is given by

PoA =
cost(complete graph)
cost(path graph)

=

(
1
2 + (n− 2) · b

)
(n− 1) · n(

1 +
(
2
3b+

1
3c
)
· n · (n− 2)

)
(n− 1)

=
(
(
1
2 + (n− 2) · b

)
· n

1 +
(
2
3b+

1
3c
)
· n · (n− 2)

.

ut

Corollary 4. For c > 1, the price of anarchy is PoA = O(1).

Proof. For c > 1 and c > 1
2 + b, the price of anarchy is one and therefore it is

also O(1).
We have that for c > 1 and b ≤ c ≤ 1

2 + b,

PoA =

(
1
2 + (n− 2) · b

)
· n

1 + (c+ b · (n− 1))(n− 2)
= O

(
b · n2

b · n2

)
= O(1),

and for 1 < c < b,

PoA =

(
1
2 + (n− 2) · b

)
· n

1 +
(
2
3b+

1
3c
)
· n · (n− 2)

= O
(
b · n2

b · n2

)
= O(1).

Thus, for c > 1 we have PoA = O(1). ut
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Theorem 9. For c+ b < 1
n2 , the price of anarchy is PoA = O(1).

Proof. For c + b < 1
n2 , all Nash equilibria are trees. Unless the distance to a

player is infinite, no player in the network has an incentive to build an edge.
As both the maximum possible change in betweennessu(s) and closenessu(s)

for a node u in a connected graph is less than n2 and all Nash equilibria are
connected, ∆costu(s) > −n2 · c− n2 · b+ 1. We require ∆costu(s) ≥ 0 such that
u does not benefit from initiating an additional channel. Thus, for c+ b ≤ 1

n2 all
Nash equilibria are spanning trees.

For c+ b ≤ 1
n2 the social optimum is also a spanning tree, as it is either the

star or path graph. It easily follows that for c + b ≤ 1
n2 and all spanning trees

cost(s) = Θ(n) and therefore the price of anarchy is O(1).

Theorem 10. For c+ b ≥ 1
n2 and c < 1, the price of anarchy is PoA = O(n).

Proof. The price of anarchy is

PoA = O

(
|E(G)|+ n3 · b+ (c− b) ·

∑
u∈[n]

∑
r∈[n]−u (dG(u, r)− 1)

n3 · b+ n

)
.

We can say that dG(u, r) < Θ
(

2√
c+b

)
, as player u would connect to player r

otherwise. Player u would become closer to half the nodes on the path otherwise
and reduce her betweenness cost through the routing potential gained by the
link addition. Therefore we have,

PoA = O

(
|E(G)|+ n3 · b+ n2 c−b√

b+c

b · n3 + n

)
.

It follows that

O
(

n3 · b
n3 · b+ n

)
=O(1), and O

(
n2 c−b√

b+c

n3 · b+ n

)
=O

(
c− b

n2 · b+ 1

)
= O (1) ,

as c+ b ≥ 1
n2 and c < 1. Thus, it only remains to consider O

(
|E(G)|
b·n3+n

)
.

As |E(G)| = O(n2) for any Nash equilibrium, we have PoA = O(n). ut

B.7 Price of Stability

Corollary 5. For c > 1 and b+ c < 1
n2 , the price of stability PoS = O(1).

Proof. As the price of stability is smaller than or equal to the price of anarchy,
we can follow from Corollary 4, that the price of stability is O(1) for c > 1.
Additionally, Theorem 9 indicates that PoS = O(1) for b+ c < 1

n2 . ut
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