
Breaking the Encryption Scheme of the Moscow
Internet Voting System

Pierrick Gaudry1 and Alexander Golovnev2

1 CNRS, Inria, Université de Lorraine
2 Harvard University

Abstract. In September 2019, voters for the election at the Parliament
of the city of Moscow were allowed to use an Internet voting system. The
source code of it had been made available for public testing. In this paper
we show two successful attacks on the encryption scheme implemented
in the voting system. Both attacks were sent to the developers of the
system, and both issues had been fixed after that.
The encryption used in this system is a variant of ElGamal over finite
fields. In the first attack we show that the used key sizes are too small.
We explain how to retrieve the private keys from the public keys in a
matter of minutes with easily available resources.
When this issue had been fixed and the new system had become available
for testing, we discovered that the new implementation was not semanti-
cally secure. We demonstrate how this newly found security vulnerability
can be used for counting the number of votes cast for a candidate.

1 Introduction

Electronic voting is more and more widely used for low-stakes elections, with
systems of various qualities. The situation for important politically binding elec-
tions is more contrasted. Some countries have completely banned the use of
e-voting in that case (for instance, Germany in 2009, the Netherlands in 2008,
or Norway [10] in 2013), while other countries use it on a regular basis or orga-
nize experiments with higher and higher stakes elections (Switzerland [14,24,8],
Estonia [15], Canada [11]).

The term electronic voting can cover different situations, and in this work,
we are interested in Internet voting, not machine-assisted voting that takes place
in polling stations. This increases the difficulty to guarantee properties like au-
thentication or coercion-resistance that are easier to obtain at a polling station,
where an officer can check classical identity cards and where the voters can go
to a polling booth to isolate themselves and choose freely.

But even more basic properties like vote secrecy and verifiability are not easy
to obtain if one wants to keep things simple and without advanced cryptographic
tools like zero-knowledge proofs, proof of equivalence of plaintexts, oblivious
transfer, etc.

For high-stakes elections, a bad practice that tends to become less accepted
by the population is to have some designated experts that study the security of

2 Pierrick Gaudry and Alexander Golovnev

the product, but how it really works remains secret to voters. Therefore, in more
and more cases, the organization will ask for a product that can be audited by
independent experts, and as an incentive to have more feedback, public testing
with an associated bug bounty program can be organized. For instance, this has
been recently the case in Switzerland, which is a country with a long history of
experiments with Internet voting. A security problem was actually discovered at
this occasion [20,13].

In Russia, September 8, 2019 was a day of local elections, where governors
and representatives for local parliaments must be elected. In Moscow, at the
occasion of this election for the City Parliament (Moscow Duma), it was decided
to test the use of Internet voting. Voters from 3 electoral districts (among a total
of 45 districts) were allowed to register for using Internet voting instead of using
classical paper voting at polling stations.

The voting system used for this election was designed specifically. For lack of
a proper name, we will call it the Moscow Internet voting system. Its deployment
is the responsibility of a service of the City called the Department of Information
Technology. In July, the system was opened for public testing.

Description of the public challenge

On July 17, 2019, some of the system’s code was posted online [9], and the orga-
nizers asked the public to test several attack scenarios [22]. A bounty program of
up to 2 millions rubles (approx. $30,000) was associated to it. We believed that
the fact that most of the information is in Russian and that almost no descrip-
tion of the system (in any language) is available apart from the source code was
a reason for having a low advertisement of this challenge at the international
level, even among the e-voting community.

The system is poorly documented, but from the source code and brief descrip-
tions of the system [18], we know that it uses the Ethereum blockchain [3] and
ElGamal encryption. No advanced cryptographic tools are present in the source
code (no verifiable mixnets [12], for instance, while they are quite frequent in
modern systems).

In one of the attack scenarios, the organizers publish a challenge consist-
ing of the public key and some encrypted messages. The attack was considered
successful if the messages got decrypted within 12 hours (the duration of the fu-
ture, real election), before the organizers reveal the private key and the original
messages. All of these cryptographic challenges (keys and encrypted data) were
put in the public repository of the source code, in a special sub-directory called
encryption-keys.

Contributions

In this paper, we describe two attacks that we mounted on the system, following
this attack scenario. The first attack uses the fact that the key sizes are so small
that, with specialized software, it is possible to compute discrete logarithms and

Breaking the Encryption Scheme of the Moscow Internet Voting System 3

deduce the private keys in far less than the 12 hours allowed for this task. After
this, the source code was modified. Our second attack is against this new version
and relies on a subgroup attack that reveals one bit of information related to
the original message. In an e-voting context, this can be enough to get a lot
of information about the voter’s choice, and indeed, in the Moscow system, the
leakage was really strong. During August, several public tests were done, with
volunteers, after the system was patched against our attacks. In this work, after
describing our attacks, we will discuss the general protocol, which is some kind of
moving target, since there is no proper specification, no clear security claims and
on top of that, deep changes were made until very late before the real election.

For this work, we used the following different sources of information about
the Moscow Internet voting system:

– The public source code, of course. This includes Javascript code to be run
on the client side, PHP code for the server side, and Solidity code to be run
as smart contracts in an Ethereum blockchain.

– The articles published in the press, sometimes quoting the designers of the
system. This includes various sources, with different opinions about the use
of Internet voting in this context. We considered some of these sources as
non-reliable.

– Private discussions with the designers and with journalists investigating the
current situation.

In the following, we will refer to different versions of the source code. In order
to make our terminology precise, we give the exact revision numbers of these
versions, corresponding to git commits in the public repository [9]:

– The “original” version, i.e. the one that was published and used for the first
public test: revision d70986b2c4da.

– The “modified” version, that took into account our first attack: revision
1d4f348681e9.

– The “final” version that was used for the election: revision 51aa4300aceb.

2 Attacks on the encryption scheme

2.1 Attack on the original implementation

In the original version of the source code (rev d70986b2c4da), the encryption
scheme can be found in the files elGamal.js and multiLevelEncryptor.js
of the smart-contracts/packages/crypto-lib/src/ subdirectory. The first
file contains a textbook version of the ElGamal encryption algorithm, while the
second one builds on top of it a “multilevel” variant that we are going to describe
here since this is a non-standard construction.

Let us first fix the notations for the textbook ElGamal encryption. Let G
be a cyclic group generated by g of order q. An ElGamal keypair is obtained
by choosing a (secret) decryption key sk as a random integer in Zq, and the

4 Pierrick Gaudry and Alexander Golovnev

corresponding (public) encryption key pk is given by pk = gsk. Let us denote
by Encg,pk(m) = (a, b) the ElGamal encryption of the message m ∈ G with a
public key pk and a generator g. This is a randomized encryption: an integer r
is picked uniformly at random in Zq, and then the encryption is obtained as

Encg,pk(m) = (a, b) = (gr,pkr ·m) .

The corresponding decryption function Decg,sk(a, b), that uses the secret key sk
corresponding to pk is then given by

Decg,sk(a, b) = b · a−sk = m.

The multilevel variant is obtained by successively applying the ElGamal en-
cryption, with three different parameter sets, first on the messagem, and then on
the a-part of the successive ElGamal ciphertexts. In the Moscow system, there
are 3 levels. Each level uses a group Gi which is the multiplicative group of a
finite field Fpi , where pi is a safe prime. An important remark, here, is that the
pi’s being different, there is no algebraic map from one group to the other. It
is necessary to lift an element of F∗

p1
to an integer in [1, p1 − 1] before mapping

it to F∗
p2
. This mapping will be without loss of information only if p2 is larger

than p1; and similarly we need p3 bigger than p2. These conditions are indeed
enforced in the source code.

Let us denote by g1, g2, g3 the generators of the 3 groups G1, G2, G3. There
are 3 ElGamal key pairs (sk1,pk1), (sk2,pk2), (sk3,pk3) used for the encryption
and decryption of the ballots. In order to encrypt a messagem ∈ G1, we compute
the following successive ElGamal encryptions:

(a1, b1) := Encg1,pk1
(m); map a1 to G2;

(a2, b2) := Encg2,pk2
(a1); map a2 to G3;

(a3, b3) := Encg3,pk3
(a2),

and then the ciphertext is the quadruple in G1 ×G2 ×G2
3 given by

MultiEnc(m) = (b1, b2, a3, b3).

The values a1 and a2 are forgotten, but someone knowing the private keys
sk1, sk2, sk3 corresponding to pk1, pk2, pk3, will be able to recover m from the
ciphertext with the following decryption procedure:

a2 := Decg3,sk3(a3, b3); map a2 to G2;
a1 := Decg2,sk2

(a2, b2); map a1 to G1;
m := Decg1,sk1

(a1, b1).

The purpose of this multilevel encryption is not known to us. We will specu-
late on this in Section 3. An obvious observation, however, is that if the discrete
logarithm problem is not hard in G1, G2 and G3, then it is possible to deduce
the secret keys ski’s from the public keys pki’s and an attacker can then decrypt
encrypted messages as quickly as the legitimate possessor of the secret keys.

Breaking the Encryption Scheme of the Moscow Internet Voting System 5

In the published source code, the primes pi’s have less than 256 bits. Discrete
logarithms in finite fields defined by such small primes have been computed for
the first time in the middle of the 90’s: Weber, Denny and Zayer did a series
of computation in 1995-1996, starting from 215 to 281 bits [31]. At that time,
the computing resources required for the computations were rather high, and
solving the 3 discrete logarithm problems to get the private keys would not have
been easily feasible in less than 12 hours as required by the challenge.

More than 2 decades later, computers are much faster and have much more
memory. Furthermore, the Number Field Sieve algorithm [19], which is the
fastest known method asymptotically was still a very new algorithm in the
mid-90’s, and many theoretical and practical optimizations have been developed
since then [23,16,6,28]. The current record is a computation modulo a 768-bit
prime [17].

We have tried the following software products that contain a full implemen-
tation of discrete logarithm computations in prime fields:

Software SageMath [27] Magma [4] CADO-NFS [25]
Version 8.8 2.24-2 rev. 6b3746a2e

Note that Magma is proprietary software, while the others are free software.

The experiments were first made on a typical personal computer equipped
with a 4-core Intel i5-4590 processor at 3.3 GHz and 16 GB of RAM. It is running
a standard Debian distribution. SageMath uses GP/Pari [26] internally for com-
puting discrete logarithms. On this machine, the computation took more than
12 hours, and actually we had to stop it after 4 days while it was still running.
According to GP/Pari documentation, the algorithm used is a linear sieve index
calculus method. As for Magma, the handbook tells us that depending on arith-
metic properties of the prime, the algorithm used can be the Gaussian integer
sieve or a fallback linear sieve. The prime we tested was compatible with the
Gaussian integer sieve. But during the linear algebra step, the memory require-
ment was much larger than the available 16 GB. We started the computation
again, on a 64-core server node with 192 GB of RAM. On this machine, Magma
computed the discrete logarithm in a bit less than 24 hours with 130 GB of peak
memory usage. It should be noted that both Magma and SageMath use only
one of the available computing cores, so that there does not seem to be an easy
way to go below the 12 hours limit with them, even with an access to a powerful
machine.

CADO-NFS is an implementation of the Number Field Sieve for integer fac-
torization and discrete logarithms in prime fields (and some experimental sup-
port for small degree extensions of prime fields). The last stable release 2.3.0 is
two years old, so we used the development version, available on the public git
repository. With CADO-NFS, on the standard personal machine, the running
times to retrieve the private keys of August 18 were as follows:

6 Pierrick Gaudry and Alexander Golovnev

key number time
1 425 sec
2 507 sec
3 314 sec

Note that the variation in the running time from one key to the other is not
unusual for computations with moderately small primes. Also, we should men-
tion that when doing this work, we realized that the development version was
not robust for numbers of this size: it sometimes failed in the final step called
“individual logarithm” or “descent”. The revision number we gave above corre-
sponds to a version where we have fixed these problems, so that CADO-NFS
can reliably compute discrete logarithms in finite fields of about 256 bits.

CADO-NFS does not include the “front-end computation” for the discrete
logarithm: the small Pohlig-Hellman step due to the fact that the order of the
generator is twice a prime must be done by hand; similarly, the base for the
discrete logarithm computed by CADO-NFS is arbitrary. Therefore, in order to
compute one of the ski, the program must be run twice, once for the generator
and once for the public key. Fortunately, in the Number Field Sieve algorithm,
many parts of the computation can be shared between the two executions mod-
ulo the same prime (this is the basis of the LogJam attack [2]), and CADO-NFS
indeed shares them automatically. The running times given above include those
2 runs for each key. For completeness and reproducibility, we provide in Ap-
pendix A a script to obtain the keys; this includes the few additional modular
operations to be done apart from the calls to CADO-NFS.

Of course, for a real attack, the three private keys can be computed simulta-
neously on 3 machines in parallel. Indeed, the chaining involved in the multilevel
ElGamal is not relevant for the keys, it occurs only during the encryption / de-
cryption of messages.

Additionally to this immediate 3-fold parallelism for the attack, CADO-NFS
also has some parallelism capabilities so that machines with more cores can
reduce the time for a single key. However, there is some limit to it with the
current implementation. For instance, the private key number 1 still required
160 seconds of wall clock time on the same 64-core machine that we used for
testing Magma.

2.2 Attack on the modified version

After the first attack was sent to the developers of the system and made public
a few days later, the public source code has been modified. The key size has
been increased to 1024 bits, and the multilevel ElGamal has been removed and
replaced by a single ElGamal encryption.

In the original version, the generators in all the involved groups were gener-
ators for the full multiplicative group of the finite fields, thus their orders were
twice a prime numbers. This exposed the danger of leakage of one bit of infor-
mation on the message, with a subgroup attack. This is an old technique [21],
but there are still frequent attacks, in particular when an implementation forgets

Breaking the Encryption Scheme of the Moscow Internet Voting System 7

the key validation step [29]. Although we did not push in this direction in the
first attack, it was explicitly mentioned as a weakness. Therefore in the modified
version, the generator was chosen to be a quadratic residue, thus having prime
order.

We discovered however that the other parts of the implementation were not
changed accordingly, so that an attack was still possible.

Let p = 2q + 1 be the 1024-bit safe prime used to define the group, where
q is also a prime. Let Qp be the group of quadratic residues modulo p; it has
order |Qp| = (p−1)/2 = q. The chosen generator g belongs to Qp, and therefore,
so is the public key pk, since it is computed as before as pk = gsk, where sk is
randomly chosen in Zq.

The problem with the modified implementation is that the message m is
allowed to be any integer from [1, q−1] which is naturally mapped to an element
of F∗

p. For semantic security (under the Decisional Diffie-Hellman assumption),
the message m should instead be encoded as one of the q elements of the group
Qp generated by g. In the case where m is not necessarily picked from the group
of quadratic residues, the Decisional Diffie-Hellman assumption does not hold
and indeed it is possible to build an efficient distinguisher, thus showing that
the encryption scheme in the modified version is not semantically secure.

Let us make this explicit. If the message m becomes a quadratic residue
after being mapped to F∗

p, then for every choice of randomness of the encryption
algorithm, in the resulting ciphertext Encg,pk(m) = (a, b), the second component
b is also a quadratic residue. Indeed, if g and m belong to Qp, then there exist
x and y in F∗

p such that g = x2 and m = y2 Then

b = pkr ·m = gr·sk · y2 = (xr·sky)2 ∈ Qp .

Similarly, if m is not a quadratic residue, then b = pkr · m is not a quadratic
residue either.

Testing the quadratic residuosity of b can be done by computing the Legendre
symbol of b and p. Thanks to the law of quadratic reciprocity, a very efficient
algorithm similar to the Euclidean algorithm is available [30]. Therefore from
just the knowledge of a ciphertext, it is possible to immediately deduce if the
corresponding cleartext m belongs or not to Qp. Roughly half of the messages
are mapped to Qp. Hence, one bit of information is leaked.

In order to test the validity of this attack, we checked whether the b-parts
of the published encrypted messages belonged or not to Qp. It turned out that
exactly five out of the ten were quadratic residues modulo p. This shows that
indeed, some of the cleartexts were in Qp and some were not. Details for repro-
ducing these computations are given in Appendix B.

2.3 On the role of encryption in the protocol – What did we break?

As in many e-voting protocols, the encryption scheme is used to encrypt the
choice of the voter to form an encrypted ballot. From the Javascript source code
(under a sub-directory called voting-form) that is supposed to be run on the

8 Pierrick Gaudry and Alexander Golovnev

voting device of the voter, we deduce that the encrypted data consists solely of
this choice (with no additional nonce or meta-data). It takes the form of a 32-bit
unsigned integer called “deputy id” that looks random.

The link between the deputy ids and the real names of the candidates is
public, since the Javascript source code that must present the choices to the
voters has to include it.

In the original version of the encryption scheme, as soon as the election starts,
the 3 public keys of the multilevel ElGamal must become public, and from them,
in a matter of minutes the decryption keys can be deduced. Then, this is as if
the choices of the voters were in cleartext all along the process. Even if there is
a strong trust assumption on the server that receives these votes, and even if it
is honest and forgets the link between the voters and the ballots, there is still
the issue of putting them in the blockchain for verifiability. Since the ballots are
(essentially) in cleartext, the partial results become public all along the day of
the election, which can have a strong influence on the result. Actually, it is illegal
in Russia to announce any preliminary result while the election is still running.

Our second attack will not give a full information. Just one bit of information
is leaked from an encrypted ballot, namely whether or not the chosen candidate
has a deputy id which is a quadratic residue. As the deputy ids seem to be chosen
at random with no specific arithmetic property, there is a one-half probability
that they belong to Qp, as for any element of F∗

p. There could be some bias if the
deputy ids had only a few bits, but with 32-bit integers, according to standard
number theoretic heuristics this will not be the case. A plausible scenario for the
attack is then a district where two candidates concentrate most of the votes, one
of them having a deputy id in Qp and the other not. Then, from an encrypted
ballot, by computing a Legendre symbol, one can deduce the voter’s choice unless
she voted for a less popular candidate.

Therefore, as for the first attack, this second attack means that vote secrecy
relies on a very strong trust assumption in the voting server, and that the partial
results are leaked all along the process.

At first, it seems that the designers were skeptical about the feasibility of
this second attack, and they denied that it was a threat. However on August 28,
2019, they organized a last public testing, with only two deputy ids. It would
have been fully vulnerable to the described attack, since one of the ids was in Qp

and the other not. But despite the public source code was not yet modified, the
(minified) Javascript served to the volunteers during the test included a patch
against our second attack.

3 Discussion

3.1 The role of the blockchain in the protocol

Blockchain as a distributed ledger In the protocol, the encrypted ballots
are sent to an Ethereum blockchain and stored as transactions, one transaction
per ballot. The argument for doing so is a typical one used in e-voting, namely

Breaking the Encryption Scheme of the Moscow Internet Voting System 9

offering the possibility for the voters to check that their vote is indeed taken
into account. At the end of the election, again via the blockchain, the voters
are also given a way to relate each encrypted ballot to the corresponding vote
in cleartext. The goal is to provide the cast-as-intended property: if the voting
client were to silently modify the choice of the voter, this would be detected.

In the above quick description, we implicitly assumed that once the voter
has done the check that her ballot is present in the blockchain it will stay there
and be counted in the tally. This also assumes that the voters are given enough
information and tools to record the link between their vote and the corresponding
entry in the blockchain, so that the check can be done in the few days (and maybe
weeks or months) after the election.

In the Moscow election, a specific, permissioned Ethereum blockchain was
used. The impossibility for the nodes running this blockchain to rewrite the
history of the ledger in order to remove a ballot after the voter has checked it,
relies therefore on the assumption that enough nodes are honest. Furthermore,
the access to this specific blockchain was not guaranteed to stay for long, and
actually was cut by the organizers quickly after the election.

Without access to the specifications of the protocol it is difficult to draw
strong conclusions, but we consider that the verifiability properties were not as
strong as what could be hoped for from a blockchain-based ledger.

To use or not to use a smart contract for decryption In the original
implementation, at the end of the election, the 3 private keys of the multilevel
ElGamal were used to publicly decrypt all the ballots. This decryption was
implemented in the Solidity programming language, to be run as part of a smart-
contract by the nodes of the blockchain. The security properties that were sought
by doing so are unclear. There are many ways to guarantee that a decryption
has been correctly done, the most obvious in an ElGamal encryption setting is
to include a simple zero-knowledge proof (as done for instance in Helios [1]).

In the version that was modified after our first attack, the protocol was
changed, so that the decryption was done outside the smart-contract. The de-
cryption results, namely the votes in clear, were uploaded to the blockchain as
simple transactions with no computation. This operation occurs of course at the
end of the election, in order to compute the tally. And additionally, the private
key was also stored in the blockchain. This indeed allows the voters to verify
that the decryption is correct.

Doing such a big change in the protocol just a couple of weeks before a real use
in a real and high-stakes election is definitely not a good practice. However, again,
without a proper specification, it is hard to deduce all the consequences. Did the
trust assumptions change in the process? This also leaves open speculations
about the possibility that programming the decryption in a smart contract was
nothing but a peculiarity of the original design.

Is it the origin of the small key sizes? The original code included many
checks ensuring that the primes used to defined groups for the multilevel El-

10 Pierrick Gaudry and Alexander Golovnev

Gamal encryption had a size small enough so that they would fit in 256 bits.
This was taking the form of comparisons to a constant called SOLIDITY_MAX_INT
defined as 2256 − 1. It indeed corresponds to the largest (unsigned) integer type
natively supported by the Solidity programming language of the Ethereum smart
contracts. A private communication with the designers confirmed that the reason
for removing the ballot decryption of the smart-contract code and changing the
protocol accordingly was due to the lack of time to implement a multi-precision
library in Solidity, that became necessary after increasing the key size to 1024
bits.

Although the coincidence of the originally chosen bit size for the primes and
the largest integer size natively supported in Solidity is striking, it is hard to
be sure that this is the reason for the mistake. We can however speculate and
consider that the purpose of the multilevel variant of ElGamal was to compensate
for this admittedly small key size. Maybe the designers hoped for a much better
security by using the three successive encryptions, just like Triple-DES is much
stronger than DES. Unfortunately, things are quite different for asymmetric
cryptography.

Another cause of using 256-bit keys could be the confusion between the se-
curity brought by elliptic curve cryptography and the one offered by using finite
fields.

3.2 What occurred on D-day

The public source code repository was updated on September 6 (two days before
the election) in order to take into account our second attack. In the final ver-
sion the message m to be encrypted is now squared before being passed to the
ElGamal encryption, so that, indeed, the data that is encrypted is a quadratic
residue.

The prime chosen to define the group is congruent to 3 modulo 4. This has
the following consequence: (−1) is a quadratic non-residue in F∗

p, and the Tonelli-
Shanks modular square root algorithm [30] takes its simplest form, namely rais-
ing to the power (p+ 1)/4.

In order to recover the original message after the decryption, this square
root by modular exponentiation is performed, and the sign choice is based on
the relative size of p−m and m as integers between 1 and p− 1. Indeed, all the
deputy identities that are encrypted as integers that are much smaller than p.

This is close to a fix we proposed when publishing our second attack, but
instead of doing an additional exponentiation during encryption and having a
cheap decryption, here the encryption is cheap and the decryption includes the
additional exponentiation. This makes sense, since the decryption can be done
on high-end servers, while the encryption is done on the voter’s device which
might be a smartphone.

Therefore, on September 8, the election took place with an encryption pro-
cedure which was not easy to break. Even though 1024 bits are not enough for
even a medium-term security, it is certainly hard (not to say infeasible) to solve

Breaking the Encryption Scheme of the Moscow Internet Voting System 11

a discrete logarithm problem of that size in less than 12 hours of wall clock
time. With the current public algorithmic knowledge (and extrapolations based
on existing record computations [2,17]), billions of computing cores would have
to be mobilized and made to cooperate, which sounds unlikely, even with the
resources of a major company or governmental agency.

According to the organizers, more than 10 thousands of Muscovites used the
Internet voting system, in the 3 districts. In one of the districts, the difference
between the first and the second candidates was less than 100 votes in total.
This proves in retrospect the really high stakes of this experiment, since a risk
of fraud in the system directly means a risk on the final result.

During the election, it was possible to access the blockchain data with a web
interface, and the encrypted ballots were present in it. At the end of the day,
the private key was also sent to the blockchain for verifiability purposes. But a
few hours later, the access to the blockchain was cut. Fortunately, analysts of
the Meduza online newspaper recorded everything and made the data available3.
They also used the private key to decrypt the 9810 encrypted ballots they found
in the blockchain and published them. The statistics they observed from this
data raises questions about the fairness of the election, but it is impossible to
draw conclusions from just the published data.

This cutting of the access to the blockchain just after revealing the decryption
key looks like an attempt to mitigate the risk on secret of the votes, while still
having some kind of verifiability. This seems not to have been convincing: Soon
after the election, the head of the Central Election Commission of the Russian
Federation, Ella Pamfilova, made a public declaration4 clearly expressing concern
about the results of this experiment and that in the coming years this should
not be extended to the whole territory.

3.3 On the absence of specification

In our opinion, the main problems with the Moscow Internet voting system are:

– the absence of a public specification;
– the modifications made in a rush, just before the election.

In a clear specification, we expect to find much more details about the task
of each entity playing a role in the system. From just the source code it is not
always clear who is supposed to run some part of the code. What is also needed
is clear statements about the security claims and the trust assumptions.

While the designers obviously had some verifiability properties in mind, hence
used a blockchain, they certainly also wanted to maintain vote secrecy, as it is
always a requirement in such a political context. It seems however, that vote
secrecy with respect to the web server that received the (encrypted) ballots was
not a goal. Furthermore, as far as we can see, coercion-resistance was not at all
a concern, at least initially.
3 https://meduza.io/slides/meriya-sluchayno...chto-strannoe
4 https://www.kommersant.ru/doc/4095101

https://meduza.io/slides/meriya-sluchayno-pozvolila-rasshifrovat-golosa-na-vyborah-v-mosgordumu-my-eto-sdelali-i-nashli-koe-chto-strannoe
https://www.kommersant.ru/doc/4095101

12 Pierrick Gaudry and Alexander Golovnev

We do not claim that having coercion-resistance and secret with respect to
the voting server is necessary for any voting system. But this should be clearly
stated, so that the officials who validate the use of the system can take the
decision, while knowing the risks.

This ideal process of having a clear specification, with well-stated trust as-
sumptions and security claims is deeply incompatible with the way this election
was organized. Indeed, while making a slight modification to a protocol to fix
a problem is certainly feasible without having to do again the security analysis
from scratch, the changes made by the designers just a few weeks or even a few
days before the election were so important that they would have required to
revise pages and pages of documentation if this documentation was public. And
in fact, it seems that the decision to cut the access to the blockchain shortly
after the end of the election was made as a quick response to some bad press
about the risks on privacy and coercion. Somehow, they decided to reduce the
verifiability to try to save other properties.

4 Lessons learned and conclusion

The first lesson learned from this story is, not surprisingly, that designers should
be very careful when using cryptography. The authors of the Moscow system
made many mistakes with the encryption scheme they decided to use. And in
fact, even now, technically the encryption is still weak for two reasons. First, the
1024-bit key is too small for medium term security, and if the protocol changes
so that vote privacy relies on it, this will not be enough. Furthermore, as far
as we could see, the way the prime was chosen is not public, so that it could
include a trapdoor making discrete logarithms easy to compute for the design-
ers [7]. Second, textbook ElGamal, which is what is implemented now, is not
IND-CCA2. Depending on the protocol, this might lead to minor or devastating
attacks. As an example of the latter, in a protocol that would include a decryp-
tion oracle that allows to decrypt any ciphertext that is not in the ballot box (for
instance, for audit purpose), it would be easy to use the homomorphic properties
of ElGamal to get all the ballots decrypted.

The second lesson is that using a blockchain is not enough to guarantee full
transparency. There are various notions of verifiability in the e-voting litera-
ture [5], and the designers must clearly say which property they have, under
precise trust assumptions. These trust assumptions must be made even more
carefully when using a permissioned blockchain, where the nodes running the
blockchain are probably specifically chosen for the election, and where the ac-
cess to the blockchain can be cut at any time.

Even more specific to e-voting, the Moscow system is a good example of the
difficulty for an Internet voting system to make the vote secrecy rely uniquely on
cutting the link between the voters and their encrypted ballots when they arrive
on a server that should also authenticate the voters. What is really required is
to cut the link with the vote in clear, and, for this, classical methods exist like
homomorphic decryption or verifiable mixnets. In such a high-stakes election,

Breaking the Encryption Scheme of the Moscow Internet Voting System 13

many seemingly incompatible security properties must be satisfied (secrecy vs
transparency), and advanced cryptographic tools are almost impossible to avoid.

Finally, as a conclusion, although our attacks led to the system using a better
encryption scheme, it is clear that the system as a whole is still far from being
perfect. We consider it likely that if the specification were becoming public in
the future, other attacks would be revealed. Therefore, we believe that the main
impact of our work was to draw the attention to the system as something that
was maybe not as secure as what was claimed. The bad publicity in the press
hopefully influenced some potential voters who decided not to take the risk of
using this still really problematic system and went for paper ballots instead.

Acknowledgements

Thanks to Iuliia Krivonosova and Robert Krimmer, for sharing some information
about the Moscow Internet voting. In particular Iuliia’s blog post [18] was quite
useful. We also thank Noah Stephens-Davidowitz for his comments on an earlier
version of this note. We thank Mikhail Zelenskiy and Denis Dmitriev for sharing
some data and information about the voting scheme.

References

1. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university
president using open-audit voting: Analysis of real-world use of Helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections. pp. 10–10. EVT/WOTE’09, USENIX (2009)

2. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E.,
Béguelin, S.Z., Zimmermann, P.: Imperfect forward secrecy: How Diffie-Hellman
fails in practice. In: ACM CCS 15: 22nd Conference on Computer and Communi-
cations Security. pp. 5–17. ACM Press (2015)

3. Buterin, V.: Ethereum white paper (2013), GitHub repository: https://github.
com/ethereum/wiki/wiki/White-Paper

4. Cannon, J., Bosma, W., Fieker, C., Steel, A.: Handbook of MAGMA functions
(2006), http://magma.maths.usyd.edu.au/magma/handbook/

5. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: Verifiability
notions for e-voting protocols. In: IEEE Symposium on Security and Privacy (S&P
2016). pp. 779–798. IEEE (2016)

6. Franke, J., Kleinjung, T.: Continued fractions and lattice sieving. In: Special-
Purpose Hardware for Attacking Cryptographic Systems–SHARCS (2005), 40
pages

7. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A kilobit hidden SNFS discrete
logarithm computation. In: EUROCRYPT 2017. LNCS, vol. 10210, pp. 202–231.
Springer (2017)

8. Galindo, D., Guasch, S., Puiggali, J.: 2015 Neuchâtel’s cast-as-intended verifi-
cation mechanism. In: 5th International Conference on E-Voting and Identity,
(VoteID’15). pp. 3–18 (2015)

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://magma.maths.usyd.edu.au/magma/handbook/

14 Pierrick Gaudry and Alexander Golovnev

9. Public source code of the Moscow internet voting system. https://github.com/
moscow-technologies/blockchain-voting (2019)

10. Gjøsteen, K.: The Norwegian Internet voting protocol. In: E-Voting and Identity.
LNCS, vol. 7187, pp. 1–18. Springer (2012)

11. Goodman, N.J.: Internet voting in a local election in Canada. In: The Internet and
Democracy in Global Perspective, pp. 7–24. Springer (2014)

12. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. Journal of Cryp-
tology 23(4), 546–579 (2010)

13. Haenni, R.: Swiss Post public intrusion test – Generating random group elements
(2019), preprint: https://e-voting.bfh.ch/publications/2019/

14. Haenni, R., Koenig, R.E., Locher, P., Dubuis, E.: CHVote system specification.
Cryptology ePrint Archive, Report 2017/325 (2017), https://eprint.iacr.org/2017/
325

15. Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: 2014 6th Inter-
national Conference on Electronic Voting: Verifying the Vote (EVOTE). pp. 1–8.
IEEE (2014)

16. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer method. Math-
ematics of Computation 72(242), 953–967 (2003)

17. Kleinjung, T., Diem, C., Lenstra, A.K., Priplata, C., Stahlke, C.: Computation of a
768-bit prime field discrete logarithm. In: EUROCRYPT 2017. LNCS, vol. 10210,
pp. 185–201. Springer (2017)

18. Krivonosova, J.: Internet voting in Russia: how? https://medium.com/
@juliakrivonosova/internet-voting-in-russia-how-9382db4da71f (2019)

19. Lenstra, A.K., Lenstra, Jr., H.W. (eds.): The development of the number field
sieve, Lecture Notes in Math., vol. 1554. Springer-Verlag (1993)

20. Lewis, S.J., Pereira, O., Teague, V.: Trapdoor commitments in the Swiss-
Post e-voting shuffle proof (2019), blog note: https://people.eng.unimelb.edu.au/
vjteague/SwissVote.html

21. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: CRYPTO’97. LNCS, vol. 1294, pp. 249–263. Springer
(1997)

22. Public testing of the Internet voting system. https://www.mos.ru/upload/
documents/files/5381/Formal_Offer.pdf (2019), in Russian

23. Schirokauer, O.: Discrete logarithms and local units. Philos. Trans. Roy. Soc. Lon-
don Ser. A 345(1676), 409–423 (1993)

24. Scytl: Swiss On-line Voting Protocol (2016), manuscript
25. The CADO-NFS Development Team: CADO-NFS, an implementation of the num-

ber field sieve algorithm (2019), development version fdae0f9f382c, available from
http://cado-nfs.gforge.inria.fr/

26. The PARI Group: PARI/GP version 2.11.0 (2018), available from http://pari.
math.u-bordeaux.fr/

27. The Sage Developers: Sagemath, the Sage Mathematics Software System (Version
8.8) (2019), https://www.sagemath.org

28. Thomé, E.: Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. Journal of Symbolic Computation
33(5), 757–775 (2002)

29. Valenta, L., Adrian, D., Sanso, A., Cohney, S., Fried, J., Hastings, M., Halderman,
J.A., Heninger, N.: Measuring small subgroup attacks against Diffie-Hellman. In:
NDSS (2017)

https://github.com/moscow-technologies/blockchain-voting
https://github.com/moscow-technologies/blockchain-voting
https://e-voting.bfh.ch/publications/2019/
https://eprint.iacr.org/2017/325
https://eprint.iacr.org/2017/325
https://medium.com/@juliakrivonosova/internet-voting-in-russia-how-9382db4da71f
https://medium.com/@juliakrivonosova/internet-voting-in-russia-how-9382db4da71f
https://people.eng.unimelb.edu.au/vjteague/SwissVote.html
https://people.eng.unimelb.edu.au/vjteague/SwissVote.html
https://www.mos.ru/upload/documents/files/5381/Formal_Offer.pdf
https://www.mos.ru/upload/documents/files/5381/Formal_Offer.pdf
http://cado-nfs.gforge.inria.fr/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://www.sagemath.org

Breaking the Encryption Scheme of the Moscow Internet Voting System 15

30. Von Zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge university
press (2013), third edition

31. Weber, D., Denny, T., Zayer, J.: Discrete logarithms mod p: 215, 248 and 281
bit computation announcements on the NMBRTHRY mailing list (1995), https:
//listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY

A A shell script for the first attack

These are commands to be run on a Linux machine (Debian or Ubuntu).
The main tool for the discrete logarithm computations is CADO-NFS,
and we use GP-Pari as a ’pocket calculator’ for modular arithmetic.
install some packages
sudo apt install pari-gp jq
sudo apt install libgmp3-dev gcc g++ cmake libhwloc-dev
alias gpnoc="gp -q --default colors=\"no\""
download and compile cado-nfs
cd /tmp
git clone https://scm.gforge.inria.fr/anonscm/git/cado-nfs/cado-nfs.git
cd cado-nfs
git checkout 6b3746a2ec27 # version of 16/08
make cmake
make -j 4

download blockchain-voting and extract public keys
cd /tmp
git clone https://github.com/moscow-technologies/blockchain-voting.git
cd blockchain-voting
git checkout d70986b2c4da # most recent version at the time of writing
cd /tmp

loop on the 3 public keys; could be done in parallel on 3 machines.
for i in {0,1,2}; do

start=‘date +%s‘
extract the public key information
keyfile="/tmp/blockchain-voting/encryption-keys/keys/public-key.json"
p=‘jq .modulos[$i] $keyfile | tr -d \"‘
g=‘jq .generators[$i] $keyfile | tr -d \"‘
h=‘jq .publicKeys[$i] $keyfile | tr -d \"‘
ell=‘echo "($p-1)/2" | gpnoc‘
run cado-nfs to get log of h (takes a few minutes)
wdir=‘mktemp -d /tmp/cadorunXXXXXX‘
log_h=‘/tmp/cado-nfs/cado-nfs.py -dlp -ell $ell workdir=$wdir target=$h $p‘
run again to get log of generator (faster, since it reuses precomputed data)
log_g=‘/tmp/cado-nfs/cado-nfs.py $wdir/p75.parameters_snapshot.0 target=$g‘
deduce private key
x=‘gpnoc <<EOF

xell=lift(Mod($log_h,$ell)/Mod($log_g,$ell)); half=lift(1/Mod(2,$ell));
x0=lift(Mod(2*half*xell, 2*$ell)); h0=lift(Mod($g,$p)^x0);
if (h0 != $h, x0=lift(Mod(2*half*xell+$ell, 2*$ell)));

https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY
https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY

16 Pierrick Gaudry and Alexander Golovnev

x0
EOF‘

stop=‘date +%s‘
echo "Private key number $((i+1)) is $x, computed in $((stop-start)) seconds."

done

B Encrypted messages are not quadratic residues

In this Appendix we use the provided public key and encrypted messages in
the modified version of the public repository [9] (revision 1d4f348681e9) to show
that not all messages are quadratic residues in F∗

p. Here b is the set of the
second components of the encrypted messages (that is, each element of the set is
pkr ·m where m is some plain message, pk is the public key, and r is a random
number). The following Python code shows that only five out of ten elements are
quadratic residues. For simplicity, we compute the Legendre symbol by modular
exponentiation: the quadratic residues give 1 when raised to the power (p−1)/2.

p =
10062759081450625618037903678618826196600591242500860802791085970455088
29615914188038720723057459046019130152450978128758867982127126946624453
23678201384359740027439588690880234391145675099291004487668846511981135
30933109486902142540395785614572268133031351548262091859360232929939444
1379077427748866822254003

q = (p-1)//2

b = [
86911001506497462251782638567319361833688978813664946437333829354738909
40443974481927929263283486987233406326466505025027434679060583881689706
23263052860581382950559847777412555501704989450676046755496358356631412
74356550963994173797345489306417174072514309856175754908122436241421564
859178326320313204945649,
32994578715846315625334282465389128113015193084444994471583135772127926
44951892161427453570566766298979864185170520616403124797427010730707520
16109483404053598174999416617877699551805519137361275465665467691230764
44375224889357541488942667685714188203805416972085863674686599803137288
027861639262227344813980,
25605451399106620676652873102021964641362454624148409311459772958496440
67016843578315908545184077772794593830979151616819810966255709567920814
13077819709806694723689969137957383923170349530451483441188337477065322
87151838997509598299206147956479381022563215978764100195629663712388182
647511089787862332483202,
30936197551567269685847042352240834287171756541862382295858852516666762
11755805979729879023007285286880732674891989007741022633330800550368742
56346941237089009381794632389798562078456796442958644789501357076108208
77962547470703268773776147336174270678101221755152924933175072952910690
305403946708512011344065,
90189227659365697355063500941760536836478537551461759945631823319091683
13130539947043416222984580270526152593756457555485599018740243229324226

Breaking the Encryption Scheme of the Moscow Internet Voting System 17

84960561239260442729637671756134870576696053584273031857981168518983390
53864084929055706240055307151918736952456608210700937953363208336695605
308414504363789714782355,
91764714915834445310265717136195446845915020510854708634828807741642908
65088805234016509342009913809428795919722926613847539079055997816788187
99170526245002211336442034207826902363786376681934271623388852857592304
13278401533846260888398253877915981254520562872698617685705979612448346
470413913994244174120780,
53180133541691920877303393106622876213880557470163604793597655634027675
13360685116768376758300338878651961955633191844125587620057500524945640
23932277996165942274611488630312874402187304375485303772307277867299568
05232142613661312171461386140429576621530845469410809123204273518058446
975266361694186911940244,
96389110287648758509344773386657594488132549702589565012028823522666392
60323174326871289534690190117827254235251942037419181816826781045590593
29371155623633657479236340811419693309298082823008055773940379928788914
61243697630183068655120651685499248763092459000930306871431366198968873
609555301941599393034947,
68868518968718401961947565883286957678496859516081208645391394051517430
60154089569868014396600078685718742310976349636761884312463762214119090
17014367814111630789237262689248078371187306393398854088463937893954685
30979657018007065848405280697276892839194542147616119874097494557367533
44803639667081357573332,
59049331935932409191703521981449178033897833739363938803374780496048381
08167852649116009537459386386032599267182731855221804003545963016545542
41231467392800236514010370577555635998585837533974218865577533874244033
45003133365685878245562130520111649077186632157205095851334912141011894
784614717824328145876601

]

for i in range(len(b)):
print(pow(b[i], q, p))

C Parameters from the public testing held on August 28

In this Appendix we show the encryption parameters used for the last public
testing held on August 28, 2019. These were not included in the GitHub public
repository but were extracted from the Javascript code sent to the voters. There
were two candidates, one option corresponded to a quadratic residue, while the
other one corresponded to a quadratic non-residue. Therefore, the second attack
described in Section 2.2 would have decoded all votes.

p =
12270848251665690851841155105748670756648053237913900516699359405362771
39717263095726449865110213728719981659033550058365258369834144969686617
29191112587333253191262755602784412922675331893614019119979108938727080
35007007749458130783976450013979645236359373116042676595576310035726012
4300619948890487736216143

18 Pierrick Gaudry and Alexander Golovnev

q = (p-1) // 2
m1 = 3247602110
m2 = 667396531
print(pow(m1, q, p))
print(pow(m2, q, p))

	Breaking the Encryption Scheme of the Moscow Internet Voting System

