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Abstract. This paper proposes a decentralized netting protocol that
guarantees the privacy of the participants. Namely, it leverages the blockchain
and its security properties to relax the trust assumptions and get rid of
trusted central parties. We prove the protocol to be optimal and we an-
alyze its performance using a proof-of-concept implemented on top of
Hyperledger Fabric.
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1 Introduction

Currently, banks settle their liabilities to each other through inter-bank payment
systems generally managed by their country’s central bank. The central bank
opens an account for the local banks in its jurisdiction and enforces that each
account maintains a certain level of liquidity to accommodate future settlements.
Upon receiving a payment instruction, say bank A transfers z home-currency
to bank B, the central bank deducts = from A’s account while adding = to B’s
account.

Historically, inter-bank payments were settled via (end of day) netting sys-
tems, but as the volume and the value of transactions increased central banks
became wary of the risks involved in deferred net settlement systems. Now, cen-
tral banks favor real-time gross settlement (RTGS) systems. In RTGS, payment
instructions are settled individually and immediately at their full amount. How-
ever, the benefit of immediate finality incurs high liquidity costs on the banks.
The liquidity demands in RTGS systems are enormous; in fact, the daily transfer
volume in typical inter-bank payment systems could be as large as a substantial
fraction of the annual GDP [1]. Fig. 1 on the left illustrates a simple scenario in
which participating banks are not able to settle their payments individually due
to insufficient liquidity, bringing the system to a halt known as gridlock. To re-
solve gridlocks, banks combine RTGS with liquidity saving mechanisms (LSM),
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Fig. 1. Tllustration of a gridlock scenario and netting procedure

of which netting is the most effective one. Fig. 1 on the right illustrates how
triple-lateral netting helps resolve system gridlock.

Traditionally, central banks are in charge of resolving gridlocks and guaran-
teeing that the system runs smoothly without interruptions. Essentially, they
operate a centralized payment queue to which every participating bank submits
its payment instructions, and perform multilateral netting. That is, the process
of offsetting the value of multiple payments due to be exchanged between the
banks. After netting, the central banks settle the net liability of the participants
without overdraft. In addition to performing netting correctly, central banks
are trusted to preserve the confidentiality of payment instructions coming from
each bank. While placing such trust in central banks may be justified, it comes
with great liability risk for them. Furthermore, in the case of cross-border multi-
currency transfer, it is challenging to find a trusted mediator to settle payments.
This is why central banks are actively looking for alternatives to centralized
netting and settlement.

Thanks to the emergence of Bitcoin [2] and the ensuing interest in blockchain
technology, financial institutions have been investigating avenues to make de-
centralized inter-bank payment systems a reality, e.g., Project Jasper [3], Project
Ubin [4]. However, while these two projects succeed in removing the single point
of failure and achieving immediate and final settlement without the need for
transaction reconciliation, their prototype systems are missing the crucial func-
tionality of decentralized multilateral netting, making them less practical.

We recall here that a multilateral netting process is viable, if it is correct and
fair. Correctness ensures that (i) when the sender’s account is debited = dollars,
the receiver’s account is credited z dollars; and (ii) participants will not pay
more than their current balance plus their allowed credit. These two properties
guarantee that the total liquidity in the system remains the same before and after
settlement. Fairness on the other hand, captures the requirement that netting
should not favor any participant in terms of payment settlement priority, rather
it should reach an overall optimal netting strategy, i.e. either the maximum
number of instructions settled, or the maximum amount of payments settled.

In the case of centralized netting [5-7], correctness and fairness are easy to
satisfy as the central party sees all payment instructions and can perform the



netting and update the banks’ accounts accordingly. In contrast, meeting these
requirements in a decentralized payment system is a real challenge. Without a
trusted central party, participants might be reluctant to advertise their payment
instructions for everyone to see. This means that in a decentralized netting pro-
tocol, participants should see only their own payment instructions and based
on those decide which payments to settle first. An ill-designed protocol however
could allow a malicious participant to choose to settle only the payments that
increase her current liquidity balance to the detriment of others’. Therefore, the
best approach to design decentralized netting solutions is to enable each partic-
ipant to solve their own net settlement locally, and have in place a mechanism
to verify that the local settlements are both fair and correct.

In this paper, we propose a solution that leverages the blockchain to imple-
ment decentralized netting without sacrificing the privacy of the participants. It
should be noted that we are not the first to propose leveraging the blockchain for
netting. Recently, Wang et al. [8] introduced a blockchain-based netting solution
for gridlock, but it differs from ours in two aspects: (i) it relies on a central party
to check the netting result and make sure that the total liquidity is preserved;
and (ii) while it hides the individual payment amount of the involved banks, it
reveals the net amounts that should be paid.

Contributions. The contributions of this paper are two-fold:

— A first-of-its-kind decentralized netting protocol that does not require any
central party but still guarantees correctness and fairness. The proposed
protocol collects the local settlements of the participants and feeds them
to a smart contract running on the blockchain to reach a globally optimal,
correct and fair settlement.

— An enhanced privacy-preserving extension that further protects the confi-
dentiality of the payment amounts. In this extension, payment amounts are
encoded as homomorphic Pedersen commitments and zero-knowledge proofs
are provided to the smart contract to verify the correctness of the local
settlement in a privacy-preserving manner.

The remainder of the paper is organized as follows. In Section 2, we formulate
our problem followed by the proposed decentralized netting protocol without pri-
vacy. In Section 3, we give a detailed description of how to enhance our protocol
with privacy. In Section 4, we construct a blockchain-based payment system and
analyze its security properties. In Section 5, we present an implementation of the
protocol on Hyperledger Fabric and discuss our evaluation results. We conclude
our paper in Section 6 with possible future work.

2 Decentralized Netting Protocol

The general netting problem is NP complete and can be solved only approxi-
mately using the algorithms in [6, 7]. These algorithms often yield multiple pos-
sible solutions instead of the optimal one, hence sacrificing fairness. In practice,



central banks sort payments according to an order determined either by settle-
ment deadlines or by priorities defined by the participants themselves. Payments
with high priority are settled before payments with low priority. These allow cen-
tral banks to find the optimal solution and achieve fairness.

In the remainder of the paper, we restrict ourselves to the problem formula-
tion in [5] that focuses on netting for payments with priority constraints.

Notation. For n€ N, let [n]={1,...,n}. For x=[21, ..., 2], Yy =[¥1, -, Un],
let x >y denote x, > y,,Vk € [n]. Let I(-) denote the indicator function, i.e.,
I(b)=1if b is true, otherwise I(b)=0.

2.1 The Netting Problem

Let n be the number of participants in the payment ecosystem and P; refer to the
ith participant. Let d; denote the credit limit of (or the amount of cover money
deposited by) P;. Let PayOutQ, denote the queue containing the outgoing
payment instructions of P; (i.e., outstanding payments where P; is the sender):

PayOutQ; = [PayOut, ,,...,PayOut, , | (1)
PayOut, , = (Rec; , Amt; 1) (2)
Reciyk S {Pj}?:l,jyéi (3)
Athk >0 (4)

where m; is the number of payment instructions in PayOutQ,, Rec; and
Amt; j are the receiver and amount in payment instruction PayOut, ,, respec-
tively. Let x;5 € {0,1} be the indicator of whether PayOut, , will be settled
after netting:

1if  PayOut, ; will be settled
ria = (g O (5)

def def .
Let x; = [zi1,..-Tim,;] and x = [X1,...X,]. Given x, we define:

Tix) = i (6)
k=1

Sl(X) = in’kAmtivk (7)
k=1

Rl(X) = Z Z:Uj,kAmtj,kI(Recj,k = PZ) (8)
j=1k=1

T;(x) denotes the number of outgoing payment instructions from P; that will be
settled after netting, S;(x) denotes the total outgoing amount from P; and R;(x)
denotes the total incoming amount to P;. Let B; and B; be the ex-ante (before



netting) and ex-post (after netting) balances of P, respectively. The relationship
between B; and B; is given by:

B; = B; — Si(x) + Ri(x) 9)

The netting problem corresponds to finding the optimal solution that sat-
isfies the following equations:

max Zfi(x) (10)
st. B; > —d;,Yi € [n] (11)

where the liquidity constraint (11) stipulates that if the payments are simul-
taneously settled according to x then the ex-post balances plus credit limit of
each bank has to be non-negative. Here f;(x) can be either T;(x) for the number
of payments, or S;(x) for the total monetary value settled. We impose the con-
straint that the payment instructions in the outgoing queue can only be settled
in the given priority order:

Tikt1 < Tik, Vi € [n],VEk € [m; — 1] (12)

For example, for any j > k, PayOut, ; can not be settled if PayOut, ; is not
settled, implying that x; ; must be 0 if z; , = 0 . Under these constraints, either
choice of f;(x) leads to the same optimal solution, as proved in [5].

Let h(x;) denote the index of the lowest priority instruction in PayOutQ;
that can be settled:

0 if zr = 0,Vk € [ml]
maxy kI(z;, =1) o/w

h(x;) = { (13)

2.2 Blockchain-based Decentralized Netting

In the following, we describe our solution for blockchain-based decentralized
netting without privacy.

Each participant is endowed with a system-wide public key and an account
associated with that public key. Each payment instruction submitted to the
blockchain comes with a signature of its sender and a priority order. The pay-
ment smart contract verifies the signature and settles the payment instruction
immediately if there is enough balance in the sender’s account and no other
higher priority payment instruction in the outgoing queue. Otherwise, the pay-
ment instruction is added to the sender’s outgoing queue to be settled later.

Netting of payment instructions is triggered either periodically or the moment
the total queue size reaches a certain threshold defined by the system adminis-
trator. The netting process iterates through multiple rounds until convergence.
Each round consists of two operations:



Algorithm 1 Blockchain-based Decentralized Netting

1: Inputs: Bi,di,PayOthi,Vi € [n] // B; is ex-ante balance
2: Outputs: x // Indicator of payments that can be settled
3: Initialization: ¢t < 1, 7, < 1,Vi € [n],k € [mi], I° =31 my

4: repeat

5: At each P;: calculate the local proposal x* for round ¢:

6: Set x' « x'!, 2z « h(x}) // Include all payments from last round
7 While z; >0 // Tterate until liquidity constraint is satisfied
8: B = B; — Si(x!) + Ri(x") // Calculate ex-post balance
9: If B > —d; // Liquidity constraint is satisfied
10: break

11: Else

12: @i, 0,z 2 —1 // Remove lowest priority payment
13: If Zi = My

14: Submit the proposal {x!, B},0} to the ledger

15: Else

16: Bl « B — Amt; 2, 41 // Calculate hypothetical balance
17: Submit the proposal {x!, B}, B/} to the ledger

18: Smart Contract: Upon receiving proposals from N participants for round ¢
19: for i=1,...,n

20: Verify Priority Constraint: z},; ., <a},,Vk € [m; — 1]

21: Verify Convergence Constraint: xfk < ﬂc’;fkl,Vk € [mj]

22: Verify Liquidity Constraint: B} = B; — S;(x') + R;(x') and B} > —d;
23: If z; <my;

24: Verify Optimality: B, = B} — Amt; ., 11 where z; = h(x!) and B, < —d;
25: end

26: Calculate I* = Y7 S ot // total number of payments to be settled
27: If It =11,

28: Exit x + x!

29: Else

30: t < t + 1, continue to next round.

31: until converged
32: return x

1.) Participant Proposal: Each participant P; calculates her nettable set,
which corresponds to the maximum number of payments that can be settled from
P;’s outgoing queue without violating the liquidity and the priority constraints,
see Algorithm 1 lines 5 to 12. The calculation also takes into consideration the
incoming payments from the aggregate nettable set of the previous round. Note
that in the first round, all incoming payments are included. P; then submits her
nettable set and to-be-post-balance (i.e. new balance once the payments in the
nettable set are finalized). Furthermore, P; proves the optimality of her nettable
set by including the highest priority payment that cannot be resolved in the
current proposal and showing that the corresponding hypothetical to-be-post-
balance is less than —d;, cf. line 16.



2.) Smart Contract Verification and Net Payment Aggregation: Upon
receiving proposals from all participants, the smart contract verifies whether
each proposal (i) satisfies the priority and liquidity constraints and (ii) is
optimal, check lines 20 to 24. If the verification succeeds, then the individual
nettable sets of all participants are aggregated to obtain the aggregate nettable
set for this round.

The smart contract next checks whether the new aggregate nettable set is the
same as the one in the previous round. If so, then netting process has converged
and the smart contract concludes its execution by returning the aggregate net-
table set, cf. lines 27 and 28. If the aggregate nettable set is empty, we call it
a DEADLOCK as no payments can be settled on a net basis. In the case of a
DEADLOCK, the participants are unable to settle any of the queued payments
unless new liquidity is injected into the system.

If all participants are honest, then this decentralized netting protocol achieves
the global optimal solution for the netting problem.

Theorem 1. Algorithm 1 always finds a unique and optimal solution for prob-
lem defined by equations (10) to (12). In addition, the solution is independent
of the choice of the objective function as either maximum total value settled or
mazimum number of payments settled.

The proof of Theorem 1 is deferred to Appendix A.

3 Decentralized Privacy-Preserving Netting

Although algorithm 1 is optimal, it does not protect the privacy of system par-
ticipants. All payment instructions are posted to the ledger in the clear. To
preserve the privacy of the participants, we enhance our decentralized netting
protocol with Pedersen commitments [11] and zero-knowledge range proofs [12].

3.1 Pedersen Commitments for Privacy-preserving Ledger

Instead of posting account balances and payment amounts to the ledger in the
clear, we obfuscate them using Pedersen commitments. These commitments are
hiding and binding: meaning that they do not reveal any information about the
committed values and that they cannot be opened to different values later.

Let G be a cyclic group of large prime order p and let g and h be two
random generators of G. A Pedersen commitment to a value v € Fj, is computed
as com(v,r) = g“h", where r € F, is a randomly-chosen blinding factor. By
construction, Pedersen commitments are additively homomorphic:

com(vy,r1)com(ve, ry) = com(vy + ve, 71 + 12)

On the ledger, the account balance BZ of P; is stored as com(BZ-,r}-) while
the amount Amt; j of the k-th payment message in P;’s outgoing queue is stored
as com(Amt; g, r; x), where 7; and r; i, Vi € [n],k € [m;] are randomly-sampled



Algorithm 2 Decentralized Privacy-Preserving Netting

1: Public Inputs: com(Bi,f'i),di,PayOthi,W € [n]
2: Outputs: x // Indicator of payments that can be settled
3: Initialization: ¢t <+ 1, a7, < 1,Vi € [n],k € [mi], I° =31 my
4: repeat
5: At each P;: calculate the local proposal x* for round ¢:
6: xt e x! 2 — h(xh) // Include all payments from last round
7 While z; >0 // Tterate until liquidity constraint is satisfied
8: B = B; — Si(x!) + Ri(x") // Calculate ex-post balance
9: If B > —d; // Liquidity constraint is satisfied
10: break
11: Else
12: xt a0,z 2z — 1 // Remove lowest priority payment
13: Calculate com(B;, 7)) com(Bl7 :)com(S;(x"), r}) “tcom(R;(x"), )
14: Construct zkrp,, proof = (B;) // zero-knowledge range proof
15: If Zi = My
16: Submit proposal {x}, com(B;,7}),m(B), 0, 0} to ledger
17: Else
18: com(B}, ) < com(B;, 7 )com(Amt; o, 11,74 24+1) "
19: Construct zkrp,, proof m(B}) // zero-knowledge range proof
20: Submit proposal {X§7com(Bf7Ff)77r(B ), com(BL, ), W(B{)} to ledger
21:  Smart Contract: Upon receiving proposals from N participants for round ¢
22: for i=1,...,n
23: Verify Priority Constraint: xi,ﬁ_l < m, 5 Vk € [m; — 1]
24: Verify Convergence Constraint: z{; < !’ 5 Vk € [my]
25: Verify Liquidity Constraint:
26: com(B},7}) = com(B, #;)com(Si(x*), ) ~'com(R;(x"),r7)
27: and Verify, (7(B}),com(B;,7})) = 1
28: If z; <m;
29: Verify Optimality:
30: com(B,, ) = com(Bl , 77 )com(Amb; -, 41,75 2,41) " Where z; = h(x{)
31: and Verlfy,“( (Bi), com(B“r N=1
32: Calculate I' = D PN 1:1 b // Total number of payments to be settled
33: Iflt =11,
34: Exit x « x*
35: Else
36: t =t + 1, continue to next round.

37: until converged
38: return x




in F),. We assume that the sender transmits the payment amount (Amt; ) and
randomness (7 ) to the receiver privately. Thanks to the homomorphic prop-
erty of Pedersen commitments, we are able to translate the plain-text balance
calculation in Eq. (7) to (9) into an obfuscated calculation as follows:

com(S;(x),7)) = || com(Amt, g, 7 ) %" (14)
k=1
n Mm;j

com(R;(x),r!) = HH com(Amt; g, 7;.p,) % Beesw=Po) (15)
j=1k=1

= com(B;, 7;)com(Si(x), ) "Lcom(R;(x), ) (16)

com(B;, ;) T

Note that Pedersen commitments support positive integers only. However,
account balances in our solution may become negative in the case of an overdraft.
If we assume that the total liquidity in the system is less than some integer U
and that 2U < p, then Pedersen commitments can be used to handle all integers
in (—=U,U) by simply mapping negative numbers w € (=U,0) to w + p > p/2.
With this mapping, we ensure that for all v € (0,U), com(v,r1)com(—v,ry) =
com(v,r1)com(p — v, r3) = com(0,r; + r2). For ease of notation, we just write
negative integers as they are, i.e., w € (=U,0) instead of w + p.

3.2 Zero Knowledge Range Proofs

Since both balances and payment amounts are hidden, smart contracts cannot
rely only on the information in the ledger to verify the correctness and optimality
of the participant proposals. We therefore require that each payment instruction
comes with a zero knowledge proof that the payment amount is less than U
and the participant proposals carry zero knowledge proofs that shows that the
liquidity and optimality constraints are not violated. More precisely, participants
are asked to produce three types of zero-knowledge range proofs (zkrp for short).

Definition 1. A type I zero knowledge range proof zkrp, is defined as w(Amt; 1),
with verification function Verify, (m(Amt; 1), com(Amb; x, 7)) = 1 if
0 < Amt; ;, < U; Verify, (W(Amtm),com(Amti,k, r,k)) = 0 otherwise.

This proof ensures that the amount in each payment instruction is non-
negative and less than the total liquidity U. This circumvents attacks in which
a participant submits a payment instruction with a negative amount in the aim
of stealing liquidity from the prospective receiver. Any payment with negative
amount should be rejected and considered an attack.

Definition 2. Let B;‘ denotes P;’s to-be-post-balance in her proposal, at the
tth iteration, defined in Eq (9). A type II zero knowledge range proof zkrp, is
defined as w(B), with verification function Verify”(w(ég‘),com(éj,if)) =11if
—d; < B <U; Verify”(Tr(B;*),com(B-* 7)) = 0 otherwise.

101



This proof allows anyone to check that the P;’s proposal does not violate the
liquidity constraint.

Definition 3. Let B{ denotes P;’s hypothetical to-be-post-balance in her pro-
posal, at tth iteration, defined in line 16 of Algorithm 1. A type III zero knowledge

range proof zkrpy, is defined as m(BY}), with verification function Verifyy, (7(B),

com(él’»,fg)) =1if -U < B} < —d;; Verify”,(w(BZ’-), com(BY, 7)) = 0 otherwise.
This proof essentially checks whether P;’s proposal in round ¢ is optimal; i.e. P;
is not holding back payments that can be settled.

We note that all of these zero-knowledge range proofs can be implemented

using the schemes in either [12] or [13]. For space limitations, details are omitted.

3.3 Solution Description

Algorithm 2 describes our privacy-preserving decentralized netting.

A payment transaction in Algorithm 2 includes the priority of the payment
and the identity of the receiver in the clear, the amount however is obfuscated
using a Pedersen commitment. The transaction also contains a zero-knowledge
range proof that shows that the amount in Pedersen commitment does not exceed
the total liquidity U. The sender of a payment signs her transaction revealing
thus, her identity and submits it to the ledger. Moreover, the sender transmits
the opening of the Pedersen commitment to the intended recipient through a
secure channel.

Before the netting session starts, each participant P; constructs her out-
going payment message queue PayOutQ; = [PayOut, ,,...,PayOut, ,, ] with
PayOut, , = (Rec; &, com(Amt; x,7; 1)), Vk € [m;]. We assume that P; is associ-
ated with an ex-ante balance stored in the ledger as com(B;, ;).

In each round ¢, P; submits a nettable set x! to the network. She also pro-
vides a zero-knowledge range proof that her to-be-post-balance B;‘ encoded in
commitment com(B},#¥) is in the range [—d;,U). Additionally, P; provides a
zero-knowledge range proof that the hypothetical to-be-post-balance B{ hidden
in commitment com(BZ’» ,71) is less than —d;. The hypothetical to-be-post-balance
is calculated by including the payment message with the highest priority that
cannot be settled (i.e. message with index h(z!) + 1 in PayOutQ;).

It is easy to see that this protocol hides the payment amounts and account
balances and guarantees the correctness of nettable set selection. Furthermore,
according to Theorem 1, the proposed protocol also achieves fairness.

3.4 Hiding Senders and Receivers

In the current design, only the account balances and payment amounts are hid-
den using commitments, while the identities of senders and receivers are dis-
closed. One way to hide these is to express a payment instruction as an n-sized
commitment vector, which commits to the payment amount (positive number)
for the receiver, and the negative of payment amount for the sender and zero for
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Fig. 2. The detailed decentralized netting protocol illustration

other participants. This is the approach adopted by [9]. Although this approach
successfully hides the identities of sender and receiver, it is not scalable: the
transaction size, zero-knowledge proof generation and verification times are all
proportional to the size of the commitment vector (i.e. the number of partici-
pants). Alternatively, participants can inject zero-valued payment instructions to
random receivers in the network. These fake payment instructions help disguise
the actual instructions. The frequency of these fake payments can be decided
based on a trade-off between performance and the desired privacy level.

4 Payment System Construction and Security Analysis

4.1 Blockchain-based Payment System

System Participants We assume that all n participants P4, ..., P,, have peers
running on the blockchain network. We conflate the participants with their peers.
We also assume that there is a system administrator that initializes the partici-
pants’ accounts at setup time.

Participant Accounts Each participant has an account stored in the ledger.
The account is addressed with the participant’s public key and its balance is
encoded in a Pedersen commitment. When the system is first bootstrapped, the
administrator initializes each account by computing a Pedersen commitment
reflecting the current balance. The administrator communicates the opening of
each Pedersen commitment to the corresponding participant, so that the latter
can submit payment instructions. To counter front-running attacks*, the account
of each participant is locked the moment she joins the netting session and then
unlocked once the netting session ends.

4 These attacks send a payment instruction to change account balances while netting
is taking place to invalidate the range proofs computed prior to the update.



Payment Instructions and Gross Settlement Each payment instruction
identifies the sender and the receiver and includes a Pedersen commitment to the
payment amount and a zero-knowledge proof that the amount is non-negative.
If the sender has enough liquidity to settle the payment, then she finalizes her
transaction (via gross settlement) immediately by submitting to the network a
zero-knowledge range proof that her updated account balance, by deducting the
payment amount from the current account balance, is non-negative. The network
verifies the zero-knowledge proof, updates the sender and receiver’s account bal-
ance using the homomorphic property of Pedersen commitments and marks the
payment instruction as settled. Otherwise, the payment instruction is stored in
the sender’s outgoing queue based on priority (and time). We recall that the
sender is required to send to the receiver the opening of the Pedersen commit-
ment. Our protocol assumes that the participants leverage secure channels to
communicate with each other.

Gridlock Resolution and Net Settlement Gridlock [5] is a situation where
no participant can proceed to settle her outgoing queue using gross settlement,
however, all participants collaboratively may settle their payments simultane-
ously using net settlement. To that end, all participants engage in the decentral-
ized netting protocol depicted in Algorithm 2. To facilitate netting, our algorithm
uses a coordinator that acts as a timing service, which initiates netting sessions
and keeps track of timeouts in each round, see Fig. 2.

At first, the coordinator submits a request to the the network to start a
netting session. Interested participants respond by sending a request to join
the netting session. A timeout transaction triggered by the coordinator starts
the first round of the netting protocol. In each round, the participants submit
proposals as defined in Algorithm 2 line 16 or 20. At the end of each round
(triggered by the coordinator’s timeout), the blockchain verifies the proposals
and aggregates them to calculate the nettable set for the current round. If the
nettable set does not change from the previous round, then the algorithm has
converged. In the absence of a DEADLOCK, net settlement takes place auto-
matically. Namely, the blockchain updates all the involved accounts by adding
payment amounts to the receivers’ accounts and subtracting the same payment
amounts from the senders’ accounts. After settlement, the network marks the
payment instructions as settled by removing them from the outgoing queue. If
the algorithm has not converged yet, a new round starts automatically.

4.2 Trust Model

Participants We assume malicious participants. They may attempt to steal
liquidity from other participants, hide liquidity, manipulate liquidity balances,
provide false proofs and break the privacy of other participants. However, we
assume that if a participant sends a valid payment instruction, then she would
provide the corresponding recipient with the correct Pedersen decommitment.



Shared Ledger We assume the ledger to be live: valid payment transactions
will eventually be stored in the ledger. It is also assumed to be immutable: once
a transaction is stored in the ledger it cannot be removed or modified. These two
properties ensure that the ledger will always reflect an up-to-date version of the
account balances of the participants. The ledger is available at all times to all
participants in the system to submit their transactions and can be constructed
on a platform using either a crash-tolerant consensus protocol like Hyperledger
Fabric [14], or Nakamoto-like consensus protocol [2] like Ethereum.

Robustness The network waits for all participants to submit a proposal in
each round. If the proposal of some participant suffers delays, then our solution
simply times out and excludes all incoming and outgoing payment instructions
of that party. This guarantees that the efforts of honest parties are not wasted.

Security The security of the underlying blockchain consensus algorithm guar-
antees that the smart contract verifying the payment instructions and the pro-
posals be executed correctly. We recall that the smart contract logic consists of
checking a set of zero-knowledge range proofs that ensure that the system pre-
defined rules and invariant are not violated. Thanks to the soundness property
of zero-knowledge proofs, no participant can make the smart contract accept an
1nvalid payment transaction or proposal.

5 Implementation

5.1 Proof of Concept Implementation

For evaluation purposes, we implemented an experimental decentralized blockchain
payment system on Hyperledger Fabric 1.2. Our zero-knowledge range proofs are
based on Boneh-Boyen signature [12]. We use the Go’s official BN256 curve [15],
a bilinear group with 128-bit security level, to compute Pedersen commitments
and range proofs. Our implementation consists of a number of Fabric chaincode
(smart contract) interfaces that combined deliver the functionalities of payment,
netting and settlement. Appendix B lists the main functions we have imple-
mented and the code could be found at [16]. We set the credit limit to 0 for all
participants and we enforce the priority constraint as defined in Eq. (12). We
ran our experiments on an Ubuntu 16.04 with Linux kernel version of 4.4.0-133
virtual machine, with 32 VCPUs of 2.0 GHZ and 48 GB memory.

5.2 Protocol Evaluation

In our evaluation, a payment message is settled immediately if the sender has
sufficient funds and no other higher priority payment messages are in her outgo-
ing queue. Otherwise, the payment message is added to the the outgoing queue
according to its priority. Once a participant receives an incoming payment, she
tries to locally settle as many outgoing payments as possible while respecting



A O--- __—O:::Q:::Q:::Q_
iy EECL- G SO Lo o SbSSEE SEEE S S
B e S
O-- g“‘xz T~o—
[e] * EA“‘»‘. D‘_‘—D“—__"D
w
- = It “-*:-1'::1 ——————————— ===
x - A
E \\ L""‘*-..A‘_\_‘_&
E X T~a
o < A
E © |[—=— Balance=100 Before netting - » _
-©- Balance=100 After netting k.
—4—  Balance=80 Before netting X~ %
« |~ Balance=80 After netting X .
o ~|—— Balance=60 before netting %
-©- Balance=60 after netting
T T T T T T
200 400 600 800 1000 1200

Number of payments in a window
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their priorities. At some predefined time, all participants engage in the decen-
tralized netting protocol and conduct a multi-lateral net settlement based on
the netting result. We note that periodical netting improves the settlement ra-
tio of the payment system, which is defined as the ratio of the settled payment
messages to the total number of messages. In our experiment, we randomly pick
a sender and a receiver for each payment message and we draw the value of the
payment from a Pareto distribution. We call a window the time between the
start of two consecutive netting sessions.

Our experiment involves 10 participants and injects different number of pay-
ment messages per window into the system. Fig 3 plots the settlement ratio
before and after running the netting protocol against the number of payment
messages, for different initial account balances. The more payment messages we
inject, the more netting improves the settlement ratio. It is intuitive that as
the account balance increases, the probability of a gridlock decreases and the
settlement ratio before netting improves. In a practical setting, e.g. we want to
keep the settlement ratio always above 60% (horizontal line), netting must take
place for every 200, 500 and 1200 messages for initial account balance of 60, 80
and 100 respectively. As the initial account balance decreases, netting must take
place more frequently to keep the settlement ratio high. Fig 4 shows the average
number of rounds to reach convergence versus the number of payment messages
for different initial account balances. As the number of payment messages in-
creases in a window, it takes more rounds to reach convergence (the longer is
the window); as the account balance decreases, it takes slightly longer to reach
convergence. However, the total number of rounds increases only logarithmically.

Besides the Boneh-Boyen signature (BBS) based range proof, we also im-
plemented another variety: Borromean ring signature (BRS) based proof [10]
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Table 1. Creation and verification time and proof size of various components

Component Prove Verify Size
BBS [0,10%] 249ms 363ms 2624B
BBS [0,10%] 485ms 724ms 4928B
BBS [0,10'°] 963ms 1420ms 9536B
BRS [0,10] 17 ms 22ms 1664B
[
[

BRS [0,10°] 30ms 40ms 33608
BRS [0,10%%] 58ms 83ms 6688B

and compared their performances. We used the elliptic curve secp256k1[18] for
BRS-based range proof. Table 1 compares the time to generate and verify the
zero-knowledge range proofs for different ranges using different proof methods.
Table 1 also compares the size of various proofs, which is proportional to log(L),
with L being the size of the range. Our implementation shows that BRS-based
range proofs have better performances and slightly smaller proof size than BBS-
based range proofs.

6 Conclusion

This paper presents a possible approach to design a truly-decentralized netting
algorithm without compromising any security or privacy requirement. The pro-
posed solution is optimal while still being relatively efficient as the evaluation
results show. As a future work, we plan to 1.) evaluate our protocol using more
efficient zero-knowledge range proofs e.g. Bulletproofs [13] and 2.) explore de-
centralized solutions for more general netting problems.
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A Proof Of Optimality

We first prove for f; = T;(x), then we show the result is invariant to the choice
of f;. Without loss of generality, we also assume d; = 0, Vi to simplify proof no-



tation. Let m=[my,my,...,m,|" and T=[T},T,,...,T,]" € R". The problem
defined by equations (7) to (12) can be rewritten as

max ZTZ (17)

0<T<m —
st. B; = B; — S;(T;) + Ri(T) >0, Vi € [n] (18)
T,
Si(T;) =) Amt, (19)
k=1
n Ti
Ri(T)=) " Amt; . I(Rec; , =) (20)
j=1k=1

where 0 < T < m stands for 0 < T; < m;,V1 < i < n. Note that the definitions
of S;(T;) and R;(T) above implicitly model the constraints defined in (12) for
each participant ¢. In other words, if there are T, payments settled for participant
i, S;(T;) imply that they must be the first T, payments in Q;. Let T! denote the
value of T at the tth iteration of Algorlthm 1. In addition, T? is set to m for
initialization. Then Algorithm 1 essentially becomes

o . . . def
— Initialization: T? = m

— Repeat following steps
e Calculate R;(T"),Vi € [n]

e Vi € [n] find
Tt = argmaxT{TE [mz}} (21)
such that
B; — Si(T!™) + Ry(T*) >0 (22)
Tipr1 < ik, Yk € [my — 1] (23)

o If T*! = T, stop. Otherwise, continue the loop.

The decentralized netting protocol is guaranteed to find the optimal solution.
To prove this, we first prove that line 6-12 in Algorithm 1 is equivalent to Eqs.
21-23 above.

By the exit condition, we have Bf“ > (. Therefore we could construct the
following case, where

Bif' =0 = B; — S;(T) + Ry(T") =0 (24)
Suppose there exists another optimal solution 7; > Tf“ and
B = B; — Si(T;) + Ry(T") (25)

Since
Tt+1

Si(T; ZAmtlk > Si(TH) = Z Amt, (26)



it impies that ~ ~
Bl < BI*' =0 (27)
Eq.27 clearly violates the non-overdraft condition. Therefore such T does not

exist and 7} is the maximum value that can be achieved at ¢ + 1th iteration.
Furthermore, we have

1) (28)
Bxt) = max(I(al,) = 1) (20)

P ) = max(1(at 1)

In view of line 12 in Algorithm 1, the above two equations imply that

h(xiTh) < h(x!) = aitl <y, (30)
— jvit-i-l < zvit (31)

We note that the decentralized netting protocol starts with all the payment
in queue and removes current invalid payments for each deficient participant.
The optimality of T; at each itertion plus the monotonicity of T; over iterations
guarantee that the first feasible solution will also be the optimal solution and it
is unique.

Next, we show its invariance. If there is only one feasible solution, then it
also achieves the maximum total value and number of payments. If there are
two or more feasible solutions, the monotone decreasing of T; imply that any
other feasible solution after the first one contains same or fewer payments for
each participant and thus less value. This completes the proof.

B Functions of the smart contract

In Table 2, we describe the detailed functions of our implemented smart contract.



Table 2. Functions and logic of smart contract

Functions

Logics

mintAccount

addMessage

grossSettlement

proposeNettableSet

tallyGridlockProposal

netSettlement

Smart contract initializes each participant’s account with
commitments (cmp = g°h") to their balances (b) and
verifying zkrp (U > b > 0)

Smart contract adds a payment message to the system
with commitment (cm, = g*h") to payment amount (a)
and verifying zkrp (U > a > 0)

Smart contract settle the first payment in the outgoing
queue, update account balance (cmj = cmp — cmy) and
verify zkrp (U > b =b—a > 0)

Smart contract update a participant’s gridlock proposal,
verifying two zkrps (refer to the protocol)

Smart contract calculate and check the new global net-
table set. If it is the same as previous round, the gridlock
resolution protocol converges

Smart contract settle all payment messages in the net-
table set and update all parties’ account balances for a
successful gridlock resolution




