
Security Analysis on dBFT protocol of NEO

Qin Wang1, Jiangshan Yu??2, Zhiniang Peng3, Van Cuong Bui1, Shiping
Chen4, Yong Ding5, and Yang Xiang1

1 Swinburne University of Technology, Melbourne, Australia
{qinwang,vancuongbui,yxiang}@swin.edu.au

2 Monash University, Melbourne, Australia jiangshan.yu@monash.edu
3 Qihoo 360 Core Security, Beijing, China pengzhiniang@360.cn

4 Csiro, Data61, Sydney, Australia Shiping.Chen@data61.csiro.au
5 Cyberspace Security Research Center, Shenzhen, China stone dingy@guet.edu.cn

Abstract. NEO is ranked as one of the top blockchains by market capi-
talization. We provide a security analysis on its backbone consensus pro-
tocol, called delegated Byzantine Fault Tolerance (dBFT). The dBFT
protocol has been employed by NEO and other blockchains like ONT.
dBFT claims to guarantee safety when no more than f = bn

3
c nodes

are Byzantine, where n is the total number of consensus participants.
However, we identify attacks to break the safety with no more than f
Byzantine nodes. This paper provides the following contributions. First,
we evaluate NEO’s source code and present the procedures of dBFT.
Then, we present two attacks to break the safety of dBFT protocol
with no more than f nodes. Therefore, the system cannot guarantee
the claimed safety. We also provide recommendations on how to fix the
system against the identified attacks.

Keywords: Blockchain · NEO · dBFT · Safety.

1 Introduction

NEO has been one of the top-ranked blockchain platforms by its market capital-
ization. Rebranding from the Antshares in June 2017, NEO becomes the earliest
and the longest-running public chain in China. From about 0.1 USD at the be-
ginning of 2017, NEO reached a value of 160 USD at the end of 2017. At the time
of writing, it’s market capitalization is about 0.67 billion USD6. The thousand-
fold return on the investment placed NEO in the ranks of top blockchains within
China and abroad. NEO has successfully established a matured ecosystem with
decentralized applications (DApps), including games, lotteries, wallets, and ex-
changes. Furthermore, NEO has developed a complete architecture covering the
consensus mechanism and components including NeoX, NeoFS, NeoQS [29] [20].
As the core protocol, dBFT was later adopted by the Ontology platform as one
of the pluggable consensus mechanisms [23].

?? Corresponding author.
6 https://coinmarketcap.com/currencies/neo/. Data fetched on 21st Sept. 2019.



2 Authors Suppressed Due to Excessive Length

Consensus protocols make distributed participants collectively reach an agree-
ment, which enables the immutability and prevents the forks within blockchain
systems. Byzantine fault tolerance (BFT) consensus and its variants (together
denoted as BFT-style consensus) tolerate a certain number of Byzantine partici-
pants who can misbehave. BFT-style mechanisms are permissioned, and provide
a deterministic consensus guarantee [25] [26]. Various projects [18] employ the
BFT-style consensus for their special needs. In particular, Practical Byzantine
Fault Tolerance (PBFT) [9] is used as the foundation of many variants, as it en-
ables the system to efficiently (with polynomial complexity) tolerate participants
with arbitrary faults. For example, a variant of PBFT has been implemented for
Hyperledger Fabric v0.5 and v0.6 [3] and Hyperledger Sawtooth v1.0 [4] [7].

dBFT is also a variant of PBFT, with the modifications on network model
(from Client/Server to P2P), rule of permission (from fixed to dynamic) and
procedure of commit (from 3-phase to 2-phase). dBFT focuses on the perfor-
mance and scalability, however, the security has not been seriously analyzed. A
comprehensive security analysis is absent from the official documents, including
its whitepaper [20], documentation [29], and GitHub documents [19]. In fact, af-
ter examining the source code, we find that the implemented protocol is slightly
different from what has been presented in the whitepaper. For example, in the of-
ficial presentation of the protocol, not all messages transferred are signed, while
in the actual implementation they are all signed and should provide a better
security guarantee.

To evaluate the security of NEO, we first analyze the source code and provide
a formal and accurate presentation of dBFT with the security goals. Then, we
proposed two attacks against dBFT. Both attacks are on the safety of dBFT,
making conflict decisions possible. This violates the agreement property where all
honest replicas should agree on the same decision. Both identified attacks need
to require a view change to happen. The first attack assumes a malicious primary
to trigger the view change and the second attack requires a timeout (when the
network asynchrony makes a quorum unavailable) to trigger the view change.
Both attacks only require no more than f = bn3 c malicious replica, where n is the
total number of consensus participants and f is the number of Byzantine nodes
that the system is supposed to tolerate. We also provide recommendations on
fixing the identified vulnerabilities. Our contributions are summarized as follows:

– We provide the first clear presentation of the widely adopted dBFT consensus
mechanism, based on its source code [5]
git commit 5df6c2f05220e57f4e3180dd23e58bb2f675457d.

– We identify two attacks on dBFT. Both attacks are feasible with no more
than bn3 c nodes, where the first attack requires the primary to be Byzantine,
and the second attack requires a timeout of the current view.

– We provide recommendations to fix the identified problems.

The rest of our paper is structured as follows: Section 2 provides an overview
of PBFT. Section 3 defines the network assumption and the security properties,
and Section 4 provides the detailed dBFT protocol, with a comparison with



Security Analysis on dBFT protocol of NEO 3

PBFT protocol. Our identified attacks are presented in section 5. We provide
the recommended fix in section 6, and the related work in section 7. Finally,
Section 8 concludes the paper.

Communication with NEO. We have fully disclosed our results, including
both identified vulnerabilities and the recommended fixes, to the NEO team.
They acknowledge that our attacks are valid on their system, and have applied
the fixes [1] [2].

2 Overview of PBFT

Practical Byzantine Fault Tolerance (PBFT), proposed by Castrol [9], is the
most prevailing BFT consensus mechanism employed by current permissoned
blockchain systems. It enables a system to efficiently (with polynomial complex-
ity) tolerate f = bn3 c malicious nodes out of the total n nodes. PBFT is designed
in the partially synchronized network model, and proceeds in rounds denoted as
view. There are three entities contained in PBFT: Client, Primary and Replica
and three phases involved in the protocol: Pre-Prepare, Prepare and Commit.
We follow the descriptions of [9] and [22], and the communication pattern of
PBFT protocol is shown in Fig 1.

In the Pre-prepare phase, upon receiving a REQUEST message from a client,
the primary node creates and broadcasts the PRE-PREPARE message to all the
replicas. In the Prepare phase, each replica checks the validation of the received
PRE-PREPARE message. If the message is valid, the replica creates and sends a
PREPARE message to all nodes. In the Commit phase, upon receiving validated
PREPARE messages from a quorum (i.e., 2f + 1 replicas), this node creates and
broadcasts a COMMIT message to all nodes. The last step is to reply to the client
about the result. If a node receives a quorum COMMIT messages from 2f + 1
different nodes, then it executes the client request, creates and sends the reply
to the client. A client accepts the reply if it receives a reply from at least f + 1
nodes. The Pre-prepare phase is a one-to-all communication, while the Prepare
and Commit phases are all-to-all communications.

Primary

Node 1

Node 2

Node 3

Client

View-changeReplyCommitPreparePre-prepare Pre-prepare

P
ri
m

a
ry

 

Fig. 1. PBFT Protocol



4 Authors Suppressed Due to Excessive Length

The primary is changed through a View-change protocol, if only if the pri-
mary is faulty or if network asynchrony breaks the availability of a quorum.
In this case, the current round (view) is terminated and nodes initiate a view-
change to update the primary. View-change makes a new primary node select
from other nodes, and requires it to propose and send NEW-VIEW message con-
taining the changed request under the same sequence number. After that, it
enters the new view and continues the protocol.

3 Security Property

Safety and liveness are the main properties of a BFT protocol. The safety prop-
erty requires that a “bad” event in the system will never happen, and the liveness
property states that a “good” event will eventually happen. For example, PBFT
guarantees safety when no more than f = bn3 c are malicious, where n is the total
number of nodes running PBFT. PBFT guarantees liveness when no more than
f nods are malicious and the network is partial synchrony.

Network Assumption. Similar to PBFT, dBFT assumes a partially synchronous
network [11], where a message sent from an honest node will eventually arrive
within a fixed time-bound, but the bounded is unknown.

Security and liveness. While safety guarantees that the system behaves like
a centralized implementation to maintain a total order sequence of decisions,
liveness guarantees that clients eventually receive replies to their requests [9].
As a variant of PBFT, dBFT aims at providing the same guarantee under the
same assumption – the safety is guaranteed when no more than f nodes are
malicious, and the liveness is guaranteed with an additional assumption of a
partially synchronous network.

4 dBFT Protocol

This section presents how dBFT works and its comparison with PBFT. Our
presentation is based on the NEO official source code [19] and its technical
reports [29] [20]. We summarize the detailed procedures and provide the call
function workflow in the Appendix. Note that, to make it easier to understand,
we adapt the terms used in PBFT to present dBFT.

4.1 Overview of dBFT

Entities in dBFT. dBFT has three types of nodes, called “speaker”, “delegates”
and “common nodes”, and these types of nodes can be considered as the Pri-
mary, Replica and Client in the PBFT protocol, respectively. In dBFT, the pri-
mary node is randomly selected from the replicas to generate and send messages
(proposals/blocks). The replicas are required to vote for the received messages



Security Analysis on dBFT protocol of NEO 5

and maintain the globally ordered sequence of decisions (ledgers/blocks). They
are selected from clients according to their reputation as defined by NEO. The
client helps to disseminate messages through the underlying peer-to-peer net-
work. They provide various end-user services including payment, exchange, and
smart contracts.

State Transition in dBFT. There are three phases in the dBFT protocol, namely
“Prepare”, “Response” and “Publish”. The former two phases serve for the con-
sensus decision where the “publish” is used to broadcast the replies to a request.
In particular, the “Prepare” and “Response” phases are similar to the “Pre-
prepare” and “Prepare” phases in PBFT, respectively. The “Publish” is similar
to the “Reply” step of the PBFT. For simplicity, we will use the terms defined
in the PBFT to present the dBFT protocol, as they have been well accepted for
decades.

Primary

Node 1

Node 2

Node 3

View-changeReplyPreparePre-prepare Pre-prepare

P
ri
m

a
ry!!"#-pre$%"#!"!!"&!"$!"'()*+!!'()*+〉-$"

!!"#$%"#.#/$)0/#!"!!"&!"1!!'()*+〉-1"

!'()*+〉-1#

!ViewChange, /+1, h, i,!'()*+〉-1 〉Client

Fig. 2. dBFT Protocol

As shown in Fig 2, upon receiving the requests from a client, the primary
starts the Pre-prepare phase by sending the PRE-PREPARE message to all repli-
cas. Each replica verifies the validity of the received message. If valid, then it
broadcasts a PREPARE message as its response. If a node receives PREPARE mes-
sages from a quorum (2f +1 nodes), then it executes the request and broadcasts
its reply as its final decision. If the primary fails, dBFT runs its View-change
protocol to reset the parameters and rotate the primary node.

4.2 Detailed Procedures of dBFT

Each execution of the dBFT protocol is initiated by its committee selection
algorithm and leader election algorithm to form a consensus group and to select
a primary from the group. When a primary and a consensus group is defined,
the actual consensus execution protocol contains two main phases, namely Pre-
prepare and Prepare. It also contains a View-change protocol when the primary
is faulty or when the network asynchrony breaks the availability of a quorum.

Let h be the current block height (i.e., the length of the blockchain). Each
replica is labeled by an index number i where i ∈ [0, n − 1] and n is the size of



6 Authors Suppressed Due to Excessive Length

the consensus group. At the beginning of each round, the primary p is selected
from the consensus group following the rules of p = (h − v) mod n. To reach
an agreement on a block proposed by the primary node, each replica collects 2f
signatures on the proposed block from other replicas, where f = bn−1

3 c is the
assumed maximum number of Byzantine nodes. Once the agreement is reached,
a new round of consensus begins, and the view is reset to v = 0. The block
signed by replica i is defined as blockσi

. Here we give the detailed procedures of
each step, and the corresponding call function chart of each step can be found
in the Appendix.

– Committee selection: The replicas (i.e., consensus committee members) are
selected from the clients by the NEO foundation according to their reputa-
tion. Therefore, we omit the exact process here and put our focus only on
the consensus algorithm.

– Leader election: The primary is determined by (h− v) mod n, based on the
current block height h, current view v and the size n of the consensus group.
The leader rotates in the committee due to increased h.

– Pre-prepare: The primary creates a block containing valid transactions col-
lected from the network, and sends a signed pre-prepare message
< PRE-PREPARE, h, v, p, block,< block >σp> to all replicas.

– Prepare: After receiving the pre-prepare message, replica i checks the correct-
ness of the message, including the validity of signatures, the correctness of h,
v, p, block and the contained transactions. If the received proposal is valid,
then it broadcasts a signed prepare message < PREPARE, h, v, p, i, block,<
block >σi

> to all replicas.
– Reply: After collecting signed and validated PREPARE messages from a quo-

rum, the replica i is convinced that consensus is reached, and executes the
request and broadcasts its reply < REPLY, h, v,m, i,< block >σi>.

– View-change: When detecting a faulty primary or when a quorum is not
available, the replica i sends a VIEWCHANGE message < VIEWCHANGE, h, v +
1, p, i, block,< block >σi

> to other nodes. View-change is triggered when
valid messages are received from a quorum.

4.3 Comparison with PBFT

dBFT is a variant of PBFT protocol with several modifications, as follows. In
terms of protocol phases, dBFT removes several sub-protocols of PBFT. In par-
ticular, it removes the core Commit phase from the PBFT, and also removes
the auxiliary protocols including GarbegeCollection and Checkpoint. In terms
of the communication model, dBFT employs a peer-to-peer network topology
to disseminate messages, rather than the previous client-server communication
model. In terms of the message authentication, dBFT uses digital signatures to
authenticate messages rather than using MAC as in PBFT. In terms of con-
sensus committee, there are several changes. First, dBFT does not have a fixed
consensus group as in PBFT. Rather, it implements a mechanism to enable dy-
namic joining/leaving of nodes to offer flexibility. Second, for leader election,



Security Analysis on dBFT protocol of NEO 7

dBFT enforces the change of primary for each round of consensus. In particular,
at the beginning of each consensus round, the new primary p is determined by
p = (h− v) mod n. So, whenever a new block is accepted in the blockchain, the
primary will be changed.

5 Identified Attacks

This section presents two identified attacks on the safety of dBFT. Both attacks
need to enforce a view change. The first attack requires a malicious primary
to trigger the view change and the second attack requires a timeout (when the
network asynchrony makes a quorum unavailable) to trigger the view change.
Both attacks only require no more than f malicious replica, which is the case
the dBFT is supposed to tolerate. We make use of a simple scenario with four
nodes to demonstrate our attacks. Let n = 4, so f = 1. Let Ai be the identity
of the i-th replica, where i ∈ [0, n− 1].

5.1 Attack Case 1

Let A0 be the Byzantine node, and it is selected as primary. The detailed attack
process is shown as follows.

– step 1: The Byzantine primary A0 creates two blocks, block1 and block2,
such that they contain conflict transactions for e.g. spending a coin multiple
times. A0 then sends <Pre-prepare> on block1 to A1 and A2, and sends
<Pre-prepare> on block2 to A3.

– step 2: As both blocks are valid, A1 and A2 will create and broadcast a
<Prepare> message on the block1, and A3 will broadcast a <Prepare> mes-
sage on block2.

– step 3: Since no replica receives enough valid <Prepare> message (2f + 1)
from a quorum, the current round will timeout, and it triggers the view
change protocol.

– step 4: Run view change protocol honestly. Since in the previous view (v =
0), (h − 0) mod 4 = 1, so in this view v = 1, A3 will be elected as the
primary, i.e. (h− 1) mod 4 = 3.

– step 5: Run the consensus on block2 with v = 1. When a decision is reached,
A0 can create a conflict decision by releasing 2f + 1 = 3 valid <Prepare>

messages on block1 of view v = 0. This breaks the consensus safety.

5.2 Attack Case 2

Attack case 2 considers the scenario where the Byzantine replica is not primary
for the current view, and it relies on the view change triggered by network
asynchrony. (Note that unlike liveness, the safety should hold under network
asynchrony.)



8 Authors Suppressed Due to Excessive Length

– step 1: Select the leader according to p = (h− v) mod n.
– step 2: The honest leader sends a valid proposal <Pre-prepare> on block1.
– step 3: the Byzantine replica performs the following strategy. If it receives

2f + 1 = 3 signed <Prepare> messages from others, it runs the protocol
honestly. If it only receives two signed messages, then it does not react.
This can happen due to network asynchrony. In the second case, there is a
possibility that replicas timeout the current view, and request a new view.

– step 4: If a view change is triggered, then the Byzantine replica runs it
honestly.

– step 5: If the Byzantine replica is selected as primary, then it proposes a valid
proposal <Pre-prepare> on block2, which contains transactions conflict with
the ones contained in block1.

– step 6: all nodes run the consensus protocol, and reach a decision on block2
with the current view number. When the decision is reached, the Byzantine
replica releases the two signed <Prepare> messages on block1 collected in the
previous view, together with its signed <Prepare> message also on block1.
This creates a conflict decision and breaks the consensus safety.

6 Recommended Fix

As shown in the previous section, the safety of dBFT cannot be guaranteed
even when no more than f replicas are malicious, as conflict agreements can be
reached. Our identified attacks are in fact not new. It is known that it is possible
to have a secure two-phase protocol for crash fault tolerance (CFT) protocols,
but a two-phase PBFT is vulnerable against Byzantine replicas. Thus, the Com-
mit phase becomes necessary [13], [9]. The fix then becomes straight forward –
the Commit phase is necessary to guarantee the safety, and dBFT needs to add
this phase back to make the protocol secure against the two identified attacks.

The Commit phase plays a role to check if at least 2f + 1 replicas have re-
sponded to the request. If a node has collected 2f + 1 signed responses in the
Prepare phase, then it commits the block by signing it together with state infor-
mation, and sends it to all replicas. If at least 2f +1 valid commits messages are
collected, then the replica updates the local state of the blockchain by including
the block into it, and broadcasts the result to the network. As this is a standard
construction in the classic BFT protocol, and is proved to be secure [21], we
omit the formal proofs in this paper.

7 Related Work

The consensus problem can be traced back in early 1975, when the Two Gen-
erals Problem with its insolubility proof was proposed [6]. The problem was
formally proved to be unsolvable, providing a base of realistic expectations for
any distributed consistency protocols. The FLP impossibility result [13] placed
an upper bound on what it is possible to achieve with distributed processes in
an asynchronous environment. The CAP [14] theorem states that distributed



Security Analysis on dBFT protocol of NEO 9

systems cannot satisfy all three conditions, namely consistency, availability, and
partition tolerance. BFT protocols can tolerate at most f ≤ b 3nc Byzantine
nodes, unless a trusted component is used [24].

Bitcoin. Bitcoin [17] is a cryptocurrency introduced in 2008. It aims at
tolerating < 50% malicious power in the system. Unlike traditional consensus
protocols, it does not require a pre-fixed consensus group. Instead, it allows any
node to join and leave the system. It makes use of a public ledger (a.k.a. a
blockchain) to record all transactions in the system. The public ledger is a chain
of blocks, where each block contains a sequence of transactions that have not
been recorded in previous blocks. Everyone can read the ledger from the Bitcoin
network, and can write on it by finding a block such that the hash value of the
block is small enough. The process of finding a valid block is called “proof of
work”. This concept defeats Sybil attacks, where an attacker can create many
fake nodes at a low cost. Different participants may create conflicting blocks. To
provide consensus on the conflicting blocks, participants only accept the longest
chain. However, this way of agreeing about blocks only provides a probabilistic
guarantee, as it is possible for malicious participants to work on a short chain to
race with a longer one, until the shorter one beats the longer chain. This leads to
attacks such as double spending attacks [30] and selfish mining attacks [12]. In
addition, the block size is currently limited to 1 MB. This limits its transaction
throughput to 7 transactions per second, whereas other existing payment systems
handle way more. For example, Visa confirms a transaction within seconds, and
processes 2k TPS on average, with a maximum rate of 56k TPS. For more
detail, we refer readers to a detailed comparison [25] between Bitcoin and BFT
protocols.

Adapting BFT protocols in blockchain. Classic BFT protocols provide
a better throughout and security guarantee. PBFT [9] proposes the first practical
Byzantine fault-tolerant algorithm with acceptable performance. Zyzzyva [16] is
a speculation-based BFT protocol that reduces cryptographic over-heads and
increases peak throughput for demanding workloads compared to traditional
state machine replication. However, an attack [15] on the safety of Zyzzyva has
been identified. MinBFT/MinZyzzyva [24] proposes to use a trusted component
to improve the performance and security of PBFT and Zyzzyva.

However, these systems cannot be adapted directly in the blockchain, as
they require a pre-fixed consensus group. Many systems (e.g. [22, 27, 28]) have
been proposed to adapt BFT protocols to address the shortcomings of Bitcoin
blockchain. PeerCensus [10] was the first blockchain to propose using proof-
of-work for selecting consensus committees, and use a BFT-style protocol for
reaching consensus. dBFT takes a different approach, where the consensus com-
mittee is defined by NEO based on the social reputation of nodes. We refer
readers to existing comprehensive surveys [8,18,26] on the membership selection
algorithms, blockchain consensus, and identified attacks.



10 Authors Suppressed Due to Excessive Length

8 Conclusion

NEO, as the pioneer of public blockchain projects around the world, confronts
severe security threats. Our security analysis is focusing on the core component
of NEO, i.e., its dBFT consensus. As a variant derivative of PBFT, the dBFT
consensus removes the important Commit processes compared to the original
ones, resulting in deterministic forks under the specific conditions. In fact, it is
known that removing the commit phase would lead to insecurity. This paper pro-
vides a study to revisit this issue, as a lesson learned from the already deployed
and widely adapted consensus algorithm.

References

1. Discussion and improvement on dbft (2019), https://github.com/neo-project/
neo/pull/320

2. Discussion and improvement on dbft (2019), https://github.com/neo-project/
neo/pull/547

3. Hyperledger fabric (2019), https://cn.hyperledger.org/projects/fabric
4. Hyperledger sawtooth (2019), https://cn.hyperledger.org/projects/sawtooth
5. Neo source code on github (2019), https://github.com/neo-project/neo/tree/

master/neo

6. Akkoyunlu, E.A., Ekanadham, K., Huber, R.V.: Some constraints and tradeoffs
in the design of network communications. SIGOPS Oper. Syst. Rev. 9(5), 67–74
(Nov 1975). https://doi.org/10.1145/1067629.806523

7. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a
distributed operating system for permissioned blockchains. In: Proceedings of the
Thirteenth EuroSys Conference. p. 30. ACM (2018)

8. Cachin, C., Vukolić, M.: Blockchain consensus protocols in the wild. arXiv preprint
arXiv:1707.01873 (2017)

9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings
of the Third USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999. pp.
173–186 (1999). https://doi.org/10.1145/296806.296824, http://doi.acm.org/

10.1145/296806.296824

10. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Pro-
ceedings of the 17th International Conference on Distributed Computing and Net-
working. p. 13. ACM (2016)

11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM (JACM) 35(2), 288–323 (1988)

12. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Com-
munications of the ACM 61(7), 95–102 (2018)

13. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed
consensus with one faulty process. J. ACM 32(2), 374–382 (1985).
https://doi.org/10.1145/3149.214121, https://doi.org/10.1145/3149.214121

14. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of con-
sistent, available, partition-tolerant web services. SIGACT News 33(2), 51–
59 (2002). https://doi.org/10.1145/564585.564601, https://doi.org/10.1145/

564585.564601

https://github.com/neo-project/neo/pull/320
https://github.com/neo-project/neo/pull/320
https://github.com/neo-project/neo/pull/547
https://github.com/neo-project/neo/pull/547
https://cn.hyperledger.org/projects/fabric
https://cn.hyperledger.org/projects/sawtooth
https://github.com/neo-project/neo/tree/master/neo
https://github.com/neo-project/neo/tree/master/neo
https://doi.org/10.1145/1067629.806523
https://doi.org/10.1145/296806.296824
http://doi.acm.org/10.1145/296806.296824
http://doi.acm.org/10.1145/296806.296824
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601


Security Analysis on dBFT protocol of NEO 11

15. Ittai Abraham, Guy Gueta, D.M.J.P.M.: Revisiting fast practical byzantine fault
tolerance: Thelma, velma, and zelma (2018), https://arxiv.org/abs/1801.10022

16. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: ACM SIGOPS Operating Systems Review. vol. 41,
pp. 45–58. ACM (2007)

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008), https://

bitcoin.org/bitcoin

18. Natoli, C., Yu, J., Gramoli, V., Esteves-Verissimo, P.: Deconstructing blockchains:
A comprehensive survey on consensus, membership and structure (2019)

19. NEO: Neo github (2018), https://github.com/neo-project
20. NEO: Neo whiteopaper (2018), http://docs.neo.org/zh-cn/whitepaper.html
21. Rahli, V., Vukotic, I., Völp, M., Veŕıssimo, P.J.E.: Velisarios: Byzantine fault-

tolerant protocols powered by coq. In: ESOP. pp. 619–650 (2018)
22. Stathakopoulou, C., David, T., Vukolić, M.: Mir-bft: High-throughput bft for

blockchains. arXiv preprint arXiv:1906.05552 (2019)
23. Team, O.: Ont consensus (2018), https://github.com/ontio/ontology/tree/

master/consensus/dbft

24. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P.: Efficient
byzantine fault-tolerance. IEEE Transactions on Computers 62(1), 16–30 (2011)

25. Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-work vs. bft replica-
tion. In: International workshop on open problems in network security. pp. 112–125.
Springer (2015)

26. Vukolić, M.: Rethinking permissioned blockchains. In: Proceedings of the ACM
Workshop on Blockchain, Cryptocurrencies and Contracts. pp. 3–7. ACM (2017)

27. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 347–356. ACM (2019)

28. Yu, J., Kozhaya, D., Decouchant, J., Veŕıssimo, P.J.E.: Repucoin: Your reputation
is your power. IEEE Trans. Computers 68(8), 1225–1237 (2019)

29. Zhang, E.: Neo consensus (2018), http://docs.neo.org/en-us/basic/

consensus/consensus.html

30. Zhang, R., Preneel, B.: Lay down the common metrics: Evaluating proof-of-work
consensus protocols security. In: 2019 IEEE Symposium on Security and Privacy
(SP). IEEE (2019)

A dBFT Flow Chart

https://arxiv.org/abs/1801.10022
https://bitcoin.org/bitcoin
https://bitcoin.org/bitcoin
https://github.com/neo-project
http://docs.neo.org/zh-cn/whitepaper.html
https://github.com/ontio/ontology/tree/master/consensus/dbft
https://github.com/ontio/ontology/tree/master/consensus/dbft
http://docs.neo.org/en-us/basic/consensus/consensus.html
http://docs.neo.org/en-us/basic/consensus/consensus.html


12 Authors Suppressed Due to Excessive Length

!"
"
#

$
%
&
%
'

(
)
*
+
,
%
-
.%
/

0&
+
*
1
&
)
2
'0
3
1
4
*
'%
4

05
'*
'%
0"
06
+
.'
.*
78

09
:%
!;

*
&
)
0"
(
3
::
%
+
'<
72
=
>
;
*
&
)

0<
72
=
>
6+
4
%
?
0"
0;
%
.,
)
'0
@
0A
8

0!
"
0-
.%
/
B
3
C
D
%
:0
"
0#
8

0+
"
-
*
7.4

*
'2
:&
0"
0E

%
'-
*
7.4

*
'2
:&
FG
8

0.
"
H
I6
+
4
%
?
0"
0J
A8

01
"
9
:.
C
*
:I
6+
4
%
?
0"
0F
)
J
!G
0C

2
4
0+

0K
:*
+
&
*
=
'.
2
+
;
*
&
)
%
&
0"
0+
3
778

05
.,
+
*
'3
:%
&
0"
0+
%
/
0D
I'
%
L-
*
7.4

*
'2
:&
MN
%
+
,
')
OL
O8
0

0P
?
1
%
=
'%
4
-
.%
/
0"
0+
%
/
0D
I'
%
L-
*
7.4

*
'2
:&
MN
%
+
,
')
O8
0

0>
%
I9

*
.:
0"
0+
3
778

05
'*
'%
0"
0&
.,
+
*
'3
:%
5
%
+
'8

0!
"
0-
.%
/
B
3
C
D
%
:0
8

01
"
9
:.
C
*
:I
6+
4
%
?
0"
0F
)
J
!G
0C

2
4
0+

0P
?
1
%
=
'%
4
-
.%
/
L.
+
4
%
?
O0
"
0!
08
0

0)
%
*
4
%
:"
+
3
77

.Q
#

:%
'3
:+

.0
"
0J
A0
Q
0#
0C

%
*
+
&
0.
&
0+
2
'0
9
:.
C
*
:I

!R
# N
2
,
F=
)
*
+
,
%
=
.%
/
S0
!T
01
G8

N
2
,
F.
+
.'
.*
7.U
%
S0
)
T0
!T
0.
T0
:2
7%
"
V9
:.
C
*
:I
W<

*
=
>
3
1
XY
G

."
"
1

&
'*
'%
0"
0<
*
=
>
3
1

&
'*
'%
0"
09
:.
C
*
:I

K
.C

%
&
1
*
+
"
=
3
::
%
+
'J
D
72
=
>
$
%
=
%
.!
%
4
K
.C

%

&
1
*
+
R
K

(
)
*
+
,
%
K
.C

%
:F
K
J
&
1
*
+
G

Z
+
$
%
=
%
.!
%

Z
+
K
.C

%
:

=
*
&
%
0[
'.
C
%
\

]<
7=
2
>
5
%
+
'

)
T!
0=
2
::
%
=
'

N
2
,
F'
.C

%
2
3
'S
0)
T0
!T
0&
'*
'%
G

]5
.,
+
*
'3
:%
5
%
+
'

]$
%
^
3
%
&
'5
%
+
'

N
2
,
F&
)
%
+
01
:%
1
*
:%
0:
%
^
3
%
&
'G

&
'*
'%
"
$
%
^
3
%
&
'5
%
+
'

_
.77

5
.,
+
;
%
*
4
%
:

H
*
>
%
9
:%
1
*
:%
$
%
^
3
%
&
'

$
%
^
3
%
&
'

(
)
*
+
,
%
-
.%
/

H
*
>
%
5
.,
+
%
4
9
*
I7
2
*
4

5
.,
+
9
*
I7
2
*
4

3
1
4
*
'%
0'
:*
+
&
*
=
'.
2
+
0.
+
`2
:C

*
'.
2
+

C
*
>
%
;
%
*
4
%
:

+
%
/
09
:%
1
*
:%
$
%
^
3
%
&
'

V0
+
0"
0B
2
+
=
%
T

B
%
?
'(

2
+
&
%
+
&
3
&
0"
0B
%
?
'(

2
+
&
%
+
&
3
&
T

K
;
*
&
)
%
&
0"
0K
:*
+
&
*
=
'.
2
+
;
*
&
)
%
&
T

H
.+
%
:K
:*
+
&
*
=
'.
2
+
0"
;
*
&
)
%
&
L#
OT

5
.,
+
*
'3
:%
0"
05
.,
+
*
'3
:%
&
L.
O0
X

!0
"
0-
.%
/
B
3
C
D
%
:8
01
*
I7
2
*
4
0"
0

V0
-
%
:&
.2
+
T

9
:%
!;

*
&
)
T

<
72
=
>
6+
4
%
?
T

-
*
7.4

*
'2
:6
+
4
%
?
0"
0F
3
&
)
2
:'
GH

I6
+
4
%
?
T

K
.C

%
&
'*
C
1
T

0a
*
'*
0"
0C

%
&
&
*
,
%
MK
2
b
::
*
IF
G0
X

(
)
*
+
,
%
K
.C

%
:F
'c
d
e
F!
@
AG
G

(
:%
*
'%
E
:2
3
1

H
*
>
%
(
)
*
+
,
%
-
.%
/

&
'*
'%
"
-
.%
/
(
)
*
+
,
.+
,

P
?
1
%
=
'%
4
L.
O0
@
@

N
2
,
F:
%
^
3
%
&
'0
=
)
*
+
,
%
0!
.%
/
S0

)
T0
!T
0!
@
@
T&
'*
'%
G

(
)
*
+
,
%
K
.C

%
:F
'c
d
e
F!
@
AG
G

=
2
3
+
'R
d
Wf

H
*
>
%
5
.,
+
%
4
9
*
I7
2
*
4

5
.,
+
9
*
I7
2
*
4

+
%
/
0(
)
*
+
,
%
-
.%
/

V+
%
/
+
3
C
D
%
:"
P
?
1
%
=
'%
4
-
.%
/
L.
OX

!T
01
*
I7
2
*
4
V-
%
:&
.2
+
T0
9
:%
!;

*
&
)
T0

<
72
=
>
6+
4
%
?
T0
H
I6
+
4
%
?
T0
K
.C

%
&
'*
C
1
T0

a
*
'*
X

Z
+
9
:%
1
*
:%
$
%
^
3
%
&
'$
%
=
%
.!
%
4

Z
+
9
:%
1
*
:%
$
%
&
1
2
+
&
%
$
%
=
%
.!
%
4

Z
+
(
)
*
+
,
%
-
.%
/
$
%
=
%
.!
%
4

-
*
7.4

*
'2
:0

B
2
4
%
&

5
1
%
*
>
%
:0

B
2
4
%
&

]$
%
^
3
%
&
'$
%
=
%
.!
%
4

.+
4
%
?
"
1

N
2
,
FZ

+
9
:%
1
*
:%
$
%
^
3
%
&
'$
%
=
%
.!
%
4
S)
T0
!T
0.
T0
'?
G

&
'*
'%
"
<
=
*
>
3
1

K
.C

%
5
'*
C
1
0

=
2
::
%
=
'

N
2
,
FK
.C

%
&
'*
C
1
0.
+
=
2
::
%
=
'S
0

K
.C

%
&
'*
C
1
g
h
*
:+
.+
,
G

=
2
+
'%
?
'M
5
'*
'%
0"
0$
%
^
3
%
&
'$
%
=
%
.!
%
4
8

&
I=
)
:2
+
.U
%
0V

K
.C

%
&
'*
C
1
T0
B
2
+
=
%
T0
B
%
?
'(

2
+
&
%
+
&
3
&

K
:*
+
&
*
=
'.
2
+
;
*
&
)
%
&
T0
K
:*
+
&
*
=
'.
2
+
&
0X

C
*
>
%
;
%
*
4
%
:

-
%
:.
`I
5
.,
+
*
'3
:%

b
4
4
K
:*
+
&
*
=
'.
2
+

!%
:.
`I
0'
)
%
0&
.,
+
*
'3
:%
02
`0
9
:.
C
*
:I

C
%
&
&
*
,
%
M&
.,
+
*
'3
:%

-
%
:.
`I
5
.,
+
*
'3
:%

!%
:.
`I
0%
*
=
)
0&
.,
+
*
'3
:%
&
02
`0

!*
7.4

*
'2
:&
0=
2
+
'%
?
'M
&
.,
+
*
'3
:%

`2
:0
%
*
=
)
0.

=
2
+
'%
?
'M
5
.,
+
*
'3
:%
&
"
0C

%
&
&
*
,
%
M5
.,
+
*
'3
:%
8

00
0W
W*
4
4
0'
)
%
0&
.,
+
*
'3
:%
02
`0
9
:.
C
*
:I
0.
+
'2
0=
2
+
'%
?
'

C
%
C
1
2
2
70
"
0E

%
'H

%
C
2
:I
9
2
2
7F
GM
K
2
a
.=
'.
2
+
*
:I
8

00
0W
W*
4
4
0.
+
'2
0C

%
C
1
2
2
7

](
2
+
'*
.+
&
K
:*
+
&
*
=
'.
2
+

-
%
:.
`I
K
:*
+
&
*
=
'.
2
+

(
)
%
=
>
9
2
7.=
I

N
2
,
F:
%
i%
=
'0
'?
T0

h
*
:+
.+
,
G8

$
%
^
3
%
&
'

(
)
*
+
,
%
-
.%
/

*
4
4
0'
?
0.
+
'2
0=
2
+
'%
?
'M
':
*
+
&
*
=
'.
2
+

'?
)
*
&
)
M7%
+
,
)
'

"
"
=
2
3
+
'

N
2
,
F&
%
+
4
01
:%
1
*
:%
0:
%
&
1
2
+
&
%
G

5
'*
'%
0"
05
.,
+
*
'3
:%
5
%
+
'

H
*
>
%
9
:%
1
*
:%
$
%
&
1
2
+
&
%

(
)
%
=
>
5
.,
+
*
'3
:%

R
"
0d
Wf

H
*
>
%
5
.,
+
%
4
9
*
I7
2
*
4

+
%
/
09
:%
1
*
:%
$
%
&
1
2
+
&
%
V

5
.,
+
*
'3
:%
0"
05
.,
+
*
'3
:%
X

5
.,
+
9
*
I7
2
*
4

!0
"
0-
.%
/
B
3
C
D
%
:8

1
*
I7
2
*
4
0"
V0
-
%
:&
.2
+
T0
09
:%
!;

*
&
)
T0
0

<
72
=
>
6+
4
%
?
T0
-
*
7.4

*
'2
:6
+
4
%
?
0"
0F
3
&
)
2
:'
GH

I6
+
4
%
?
T

K
.C

%
&
'*
C
1
T0
0a
*
'*
0"
0C

%
&
&
*
,
%
MK
2
b
::
*
IF
G0
X

(
:%
*
'%
<
72
=
>

H
*
>
%
;
%
*
4
%
:

(
:%
*
'%
H
3
7'
.&
.,
(
2
+
':
*
=
'

b
4
4
5
.,
+
*
'3
:%

`2
:0
%
*
=
)
0.
Q
+

`2
:0
%
*
=
)
0i
Q
H

E
%
'h

.'
+
%
&
&
%
& N
2
,
F:
%
7*
I0
D
72
=
>
S0
;
*
&
)
G

5
'*
'%
0"
0<
72
=
>
5
%
+
'

*
4
4
0C

.+
%
:0
':
*
+
&
*
=
'.
2
+

K
?
0=
2
3
+
'&
Q
+

6+
!%
+
'9
*
I7
2
*
4
0(
:%
*
'%

:%
&
'*
:'
K
*
&
>
&

72
,
FZ

+
9
:%
1
*
:%
$
%
&
1
2
+
&
%
$
%
=
%
.!
%
4
T0
)
T0
!T
0.
G

)
*
&
)
a
*
'*
"
"
+
3
77

B

j

=
2
+
'%
?
'M
5
.,
L1
*
I7
2
*
4
M-
*
7.4

*
'2
:6
+
4
%
?
O0
"
0C

%
&
&
*
,
%
M5
.,

W
W*
4
4
0&
.,
+
*
'3
:%

=
2
+
'%
?
'M
5
.,
+
*
'3
:%
&
L1
*
I7
2
*
4
M-
*
7.4

*
'2
:6
+
4
%
?
O

"
0C

%
&
&
*
,
%
M5
.,
+
*
'3
:%

W
W*
4
4
0&
.,
+
*
'3
:%

72
,
FZ

+
(
)
*
+
,
%
-
.%
/
$
%
=
%
.!
%
4
T0
)
T0
!T
0.
T0
+
!G

P
?
1
%
=
'%
4
-
.%
/
L.
O0
"
0+
!

0=
2
+
'%
?
'M
!"

"
!

R
"
0d
Wf

5
I&
'%
C

=
*
&
%
0[
Z
+
9
:%
1
*
:%
$
%
^
3
%
&
'$
%
=
%
.!
%
4
\

=
*
&
%
0[
Z
+
9
%
&
1
2
+
&
%
$
%
=
%
.!
%
4
\

=
*
&
%
0[
Z
+
(
)
*
+
,
%
-
.%
/
$
%
=
%
.!
%
4
\

=
2
+
'%
?
'M
5
.,
+
*
'3
:%
&
L1
*
I7
2
*
4
M-
*
7.4

*
'2
:6
+
4
%
?
O"
C
%
&
&
*
,
%
M5
.,
+
*
'3
:%

WW
&
.,
+
0'
)
%
0&
.,
+
*
'3
:%
0.
`0
*
770
')
%
0*
D
2
!%
0!
*
7.4

T0
C
*
1
0'
)
%
0&
.,
+
*
'3
:%
0'
2
0.
+
4
%
?

N
E

O
 D

B
F

T
 C

o
n

s
e

n
s
u

s
t 
F

lo
w

 C
h

a
rt

 w
it
h

 c
a

ll
 f
u

n
c
tu

in

j

b
=
'2
:

H
*
.7D

2
?

j j j

j j j

j j j j

B

D
:2
*
4
=
*
&
'

9
:%
1
*
:%

$
%
^
3
%
&
'

D
:2
*
4
=
*
&
'

-
.%
/
(
+
*
+
,
%

D
:2
*
4
=
*
&
'

9
:%
1
*
:%

$
%
&
1
2
+
&
%

D
:2
*
4
=
*
&
'

<
72
=
>

!Q
"
P
?
1
%
=
'%
4
-
.%
/
F.
G

(
)
%
=
>
P
?
1
%
=
'%
4
-
.%
/

*
4
4
0)
*
&
)
a
*
'*

5
.,
+
*
'3
:%
"
"
+
3
77 -
%
:.
`I
5
.,
+
*
'3
:%

(
)
%
=
>
5
.,
+
*
'3
:%

6+
.'
.*
7.U
%
(
2
+
&
%
+
&
3
&

(
)
*
+
,
%
K
.C

%
:F
'c
d
e
F!
@
AG
G

(
)
*
+
,
%
K
.C

%
:F
U%
:2
G

j

(
)
%
=
>
P
?
1
%
=
'%
4
-
.%
/

-
%
:.
`I
$
%
^
3
%
&
'

5
.,
+
;
%
*
4
%
:

2
:


	Security Analysis on dBFT protocol of NEO

