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Abstract. In this paper, we propose coded Merkle tree (CMT), a novel
hash accumulator that offers a constant-cost protection against data
availability attacks in blockchains, even if the majority of the network
nodes are malicious. A CMT is constructed using a family of sparse
erasure codes on each layer, and is recovered by iteratively applying a
peeling-decoding technique that enables a compact proof for data avail-
ability attack on any layer. Our algorithm enables any node to verify
the full availability of any data block generated by the system by just
downloading a Θ(1) byte block hash commitment and randomly sam-
pling Θ(log b) bytes, where b is the size of the data block. With the help
of only one connected honest node in the system, our method also allows
any node to verify any tampering of the coded Merkle tree by just down-
loading Θ(log b) bytes. We provide a modular library for CMT in Rust
and Python and demonstrate its efficacy inside the Parity Bitcoin client.

1 Introduction

Blockchains (e.g., Bitcoin [26] and Ethereum [35]) maintain a ledger of ordered
transactions, organized into a chain of blocks. Starting from the genesis block,
network nodes extend the ledger by creating and appending more blocks, follow-
ing specific block generation rules (e.g., the longest-chain rule is used in Bitcoin
[26]). The transactions in the received blocks are validated by full nodes which
download the entire block tree. However, for better scalability, it is imperative
for a blockchain to allow light nodes, which may only be interested in verifying
some specific transactions.

In Bitcoin [26, 1], light nodes are implemented using the Simple Payment
Verification (SPV) technique: a Merkle tree is constructed for each block using
the transactions as the leaf nodes, and the Merkle root is stored in the block
header. Utilizing the Merkle root, a light node can verify the inclusion of any
transaction in a block through a Merkle proof. Light nodes and SPV have been
leveraged extensively to scale computation and storage of blockchain systems
over resource-limited nodes (e.g., smartphones) [3, 7, 4, 5, 25, 36, 18, 16, 19].
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Besides inclusion, what is more important for a light node is to validate the
transaction based on the ledger state. Due to limited resources, a light node
cannot download the entire ledger. Instead, it could use the depth of the block
that contains this transaction as a proxy. That is, the deeper this block is buried
into the chain, the more confident the light node is about the validity of the
transaction. However, for it to work, a majority (in terms of hashing power,
stakes, etc.) of full nodes must be honest and must follow protocol. Further,
there is a significant tradeoff between confirmation latency (due to the depth)
and the security about transaction validity.

Therefore, efforts to study 1) the scenario of a light node being connected to
dishonest majority of full nodes, and 2) how to achieve faster confirmation at light
nodes are becoming a major research direction [26, 9, 17, 10]. The overall idea is
to design new block structures that allow full nodes to generate and broadcast
succinct fraud proofs of individual transactions. This way, a light node will be
able to timely verify fraud transactions and blocks as long as it is connect to
at least one honest full node. One efficient construction that utilizes the roots
of the intermediate state Merkle trees after executing a subset of transactions
is proposed in [9]. However, it is vulnerable to the so-called “data availability
attack” described in [9], for which [9] proposed an erasure code based solution.
Stating the data availability attack formally and solving it comprehensively is
the main goal of this paper.

Data availability attack. A malicious block producer 1) publishes a block
header, so that light nodes can check transaction inclusion; but 2) withholds a
portion of the block (e.g., invalid transactions), so that it is impossible for honest
full nodes to validate the block and generate the fraud proof.

Although the honest full nodes are aware of the data unavailability, there is
no good way to prove it. The best they can do is to raise an alarm without a
proof. However, this is problematic because the malicious block producer can
release the hidden parts after hearing the alarm. Due to network latency, other
nodes may receive the missing part before receiving the alarm and, thus, cannot
distinguish who is prevaricating. Due to this, there is no reward and punishment
mechanism that can properly reward honest full nodes while also deterring false
alarms and denial-of-service attacks.

Therefore, for fraud proofs to work, light nodes must determine data avail-
ability by themselves. This leads to the following key question: when a light node
receives the header of some block, how can it verify that the content of that block
is available to the network by downloading the least possible portion of the block?

Need to encode the block. Since a transaction is much smaller than a block, a
malicious block producer only needs to hide a very small portion of a block. Such
hiding can hardly be detected by light nodes unless the entire block is down-
loaded. However, by adding redundancy to the data through appropriate erasure
codes [22], any small hiding on the origin block will be equivalent to making a
significant portion of the coded block unavailable, which can be detected by light
nodes through randomly sampling the coded block with exponentially increasing
probability. As a counter measure, a malicious block producer could instead con-
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duct coding incorrectly to prevent correct decoding. Light nodes rely on honest
full nodes to detect such attacks and prove it through an incorrect-coding proof.

For example, an (n, k) Reed-Solomon (1D-RS) code [31] encodes k data sym-
bols into n coded symbols, and any k out of these n coded symbols can be used
to decode the k data symbols. Thus, to prevent decoding, a malicious block pro-
ducer will have to make at least n−k+1 coded symbols unavailable, which yields
a detection probability of 1− (1−k/n)s after sampling s distinct coded symbols
uniformly at random. But an incorrect-coding proof will consist of k coded sym-
bols, which is of the same size as the original block and thus is too large. This
cost is alleviated to

√
k in [9] by using two-dimensional RS codes (2D-RS), at

the costs of reduced sampling efficiency, and increased block hash commitments
of 2
√
n Merkle roots to verify the coding correctness within each dimension. In

addition, 1D-RS and 2D-RS codes have a high decoding complexity of O(k2)
and O(k1.5), respectively.

In summary, with erasure coding, a light node pays 3 download costs for data
availability, including block hash commitments, symbol sampling, and incorrect-
coding proofs. Among them, the incorrect-coding proof cost must be minimized
to defend fake proofs, for which both 1D-RS and 2D-RS are sub-optimal.
Our contributions. In this paper, we propose SPAR (SParse frAud pRotec-
tion), the first data availability solution that promises order-optimal performance
on all the metrics, including 1) a constant block hash commitment size; 2) a con-
stant sampling cost for a given confidence level on data availability; 3) a constant
incorrectly-coding proof size; and 4) linear decoding complexity (Table 1).

Table 1: Light node download costs and full node decoding complexity (b: block
size in bytes).

hash commitment
size (bytes)

# of samples to gain
certain confidence

about data availability

incorrect-coding
proof size (bytes)

decoding
complexity

Uncoded O(1) O(b) - -

1D-RS O(1) O(1) O(b log b) O(b2)

2D-RS [9] O(
√
b) O(1) O(

√
b log k) O(b1.5)

SPAR O(1) O(1) O(log b) O(b)

At the core of SPAR is a novel cryptographic hash accumulator called coded
Merkle tree (CMT). Starting from the bottom, CMT iteratively encodes layers
of the tree and uses the hashes of the coded layer as the data for the next layer. A
light node can detect the availability of the entire tree through the Merkle proofs
of bottom layer leaves. With the entire tree available, SPAR uses a novel hash-
aware peeling decoder and a special ensemble of random LDPC (low-density
parity-check) codes to maximize sampling efficiency, minimize incorrect-coding
proof to one parity equation, and achieves linear decoding complexity.
SPAR and CMT implementation. We have developed a complete and mod-
ular CMT library in Rust and Python [2]. We have also implemented SPAR in
the Bitcoin Parity client [34], which outperforms state of the art [9] by more
than 10-fold in hash commitments, incorrect coding proof, and decoding speed.
Related works. This work was inspired by pioneering research in [9], which
proposes succinct fraud proofs and 2D-RS based data availability solution. Be-
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Fig. 1: The connections between full nodes and light nodes. Every honest (green)
node is connected to at least one honest full (square) node. A light (circle) node
may connect to more malicious (red) full nodes than honest full nodes.

sides this work, coding also improves scalability of blockchains in other areas: [28]
studies the coding efficiency of distributed storage systems [8, 15, 14, 30]. In a re-
lated vein, [29] uses a combination of Shamir’s secret sharing [32] (for storing the
headers and the encryption keys) and private distributed storage (for the blocks)
to reduce the storage overhead while guaranteeing data integrity and confiden-
tiality. [21] uses Lagrange coding to simultaneously scale storage, computation,
and security in a sharded blockchain [24, 20], via cross-shard coding.

2 Security Model

The core functionality of a blockchain is to produce, verify, and accept/store valid
data blocks in a consistent but decentralized manner. A data block, denoted by
B, is a byte string of length b that carries a batch of transactions. B is valid
for acceptance if and only if every single transaction in it is valid (e.g., enough
balance, no double spending). Thus incomplete data blocks are tantamount to
being unacceptable. Data incompleteness is not a threat to a node that fully
downloads the block. However, state-of-the-art blockchain systems also run light
nodes which do not download the blocks in entirety. We next describe these two
types of nodes formally (see Fig. 1).

Full nodes are able to produce blocks (e.g., by batching submitted transac-
tions), and to download and verify blocks produced by other full nodes. Upon
acceptance, they store the entire block locally. Upon rejection, they broadcast a
fraud proof to alert the other nodes. We note, however, that malicious full nodes
do not necessarily follow such requirements, and can act arbitrarily.

Light nodes can only afford to download a small amount of data from each
block and perform simple computations such as hash checks and fraud proof
verification, but not to operate on whole data blocks. By accepting a block B,
they only store its hash commitment D = g(B). Here g() is a hash accumulator
such as Merkle tree generator, which will allow it to use D to verify the inclusion
of any transaction in B through a Merkle proof. Without loss of generality, we
assume light nodes are honest, as they are not able to deceive full nodes.

We assume the following network model:
1. Reliable communication: Two directly connected nodes can reliably com-

municate via both unicast and broadcast without message loss or corruption.
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2. Connectivity: Every honest (full and light) node is directly connected to
at least one honest full node. In other words, we assume a connected sub-graph
of honest full nodes, and all the light nodes are connected to it.

3. The network is synchronous. These three assumptions together means that
a valid message sent by an honest node can be received by all appropriate honest
nodes (e.g. blocks for honest full nodes, block headers and fraud proofs for light
node) within a fixed delay if every honest node re-broadcasts it.

4. The network allows nodes to send messages anonymously.

Importantly, our network model allows dishonest majority , i.e., each light
node can be directly connected to more malicious full nodes than honest ones.
Due to this, a light node cannot determine the completeness of a block through
its connected full nodes, via a majority vote for instance.

A malicious block producer is thus motivated to conduct a data availability
attack, where it 1) does not fully disclose B, so that honest full nodes are not
able to verify B; and 2) broadcasts D, so that itself and its colluding full nodes
can forward D to their connected light nodes and deceive them that the B that
satisfies g(B) = D is valid for accepting. Thus, the key for a light node to protect
itself from accepting a fraudulent block is to make sure that B is fully available.
This gives rise to the main problem we try to address in this paper:

Data availability problem: Upon receiving a hash commitment D, how
can a light node efficiently verify that a data block B that satisfies g(B) =
D is fully available to the system?

A simple strategy for a light node is to randomly sample portions of B, and
determine that it is unavailable if it does not receive all requested portions. Since
the size of a transaction is usually much smaller than the block, a malicious block
producer only needs to hide a very small portion (say, e.g., a few hundred bytes)
of a fraudulent block, which can hardly be detected through random sampling.

A malicious block producer could also conduct selective disclosure: when
requested by light nodes, the malicious block producer may select a subset of
the light nodes and fully disclose their requested portions, as long as the total
disclosed portions do not reveal B. These light nodes will be deceived about the
availability of B and will accept it, as no fraud proof of B can be produced.

Thus, as similarly done in [9], we characterize the security of the above described
system using the following measures:

Soundness: If a light node has determined that a data block is fully avail-
able, then at least one honest full node will be able to fully recover this data
block within a constant delay.

Agreement : If a light node has determined that a data block is fully avail-
able, then all the other light nodes in the system will determine that the data
block is fully available within a constant delay.

Recently, an erasure coding-assisted approach was proposed in [9] to improve
sampling efficiency and suppress the data availability attack. In the next section,
we will motivate this approach and overview the challenges it faces.
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3 Overview of Erasure Coding Assisted Approach

An (n, k) erasure code evenly partitions a block B of b bytes into k data symbols
of b

k bytes each as B = [m1, · · · ,mk], and linearly combines them to generate
a coded block with n > k coded symbols, C = [c1, · · · , cn]. The ratio r = k/n
is called the coding rate. The n hashes of these coded symbols are accumulated
to obtain the hash commitment D of C, which is published with C. With a
good erasure code, a block producer’s hiding of one data symbol is equivalent to
making the value of many coded symbols unavailable to the system. In general,
a pair of good erasure code and decoding algorithm yields a large undecodable
ratio α, which is the minimum fraction of coded symbols a malicious block
producer needs to make unavailable to prevent full decoding. Such hiding can be
caught by a light node with an exponentially increasing probability of 1−(1−α)s

through randomly sample s coded symbols when n is large, indicating that O(1)
samples are sufficient. Below is an example.

Example 1. Uncoded v.s. coded sampling efficiency. Given a block of 4 data
symbols [m0, · · · ,m3], a block producer generates 8 coded symbols as follows:{

c0 = m0, c1 = m1, c2 = m2, c3 = m3,

c4 = c0 + c1, c5 = c1 + c2, c6 = c2 + c3, c7 = c3 + c0.
(1)

To prevent decoding through hiding, a malicious block producer must either pub-
lish no more than 3 data symbols or no more than 5 coded symbols. Both will
make at least 3 coded symbols unavailable to the system (α = 3

8). Such unavail-
ability can be caught with a probability of 1 − 5

8 ·
4
7 = 64.3% after randomly

sampling 2 distinct coded symbols. In contrast, without coding, the hiding of one
data symbol can be caught with a probability of only 1− 3

4 ·
2
3 = 50%.

To counter erasure coding assisted random sampling, a malicious block pro-
ducer could conduct an incorrect-coding attack : It generates coded symbols
that fail the parity equations (the equations describing the linear relations be-
tween coded symbols in Example 1) specified by the erasure code, and generates
D using these invalid coded symbols. This way, it can pass light node random
sampling through hiding only one data symbol and publishing most of the coded
symbols, which will not allow honest full nodes to correctly decode B.

Fortunately, this attack can be detected by honest full nodes by comparing
the decoded block with the commitment D. Upon detection, an honest full node
can generate an incorrect-coding proof, which consists of the coded symbols of
failed parity equation(s) and appropriate hash commitments, so that light nodes
can verify them and reject the block. Using Example 1, an incorrect coding proof
about c4 = c0 + c1 could be c0 and c1 with matching Merkle proofs, plus the
Merkle proof of c4, which, however, does not match the value of c0 + c1.

To keep incorrect coding proofs small, [9] applies 2D-RS (2-dimensional
Reed-Solomon) code. The k data symbols are placed as a

√
k ×
√
k square,

then a (
√
n,
√
k) RS code is applied to every row/column. The resulted 2

√
n

rows/columns yield 2
√
n Merkle roots, which are downloaded by light nodes as
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block header. Each root allows a light node to verify the associated row/column
by decoding it using any

√
k coded symbols of it (from incorrect-coding proof)

and reproducing the root. Thus, 2D-RS offers light nodes 1) a header cost of
O(
√
b), 2) a sampling cost of O(log b), and 3) an incorrect-coding proof size of

O(
√
b log b). Here log b is due to logarithmic growth of Merkle proof size with b.

In this paper, we propose SPAR (SParse frAud pRotection), the first solution
to the data-availability problem that is order-optimal in all the above three
metrics: a header cost of O(1), a sampling cost of O(log b), and an incorrect-
coding proof size of O(log b). To this end, SPAR leverages four core components:
1. a novel hash accumulator named coded Merkle tree (CMT), which encodes

every layer of the tree to protect the availability of the entire tree. This way,
the Merkle proof of every coded symbol will be available, which will enable
every parity equation to be committed and verified alone;

2. a dedicated sampling mechanism that enables a light node to check the avail-
ability of the entire CMT by sampling O(log b) bytes plus one Merkle root;

3. a hash-aware decoding algorithm that is able to detect and prove any single
failed parity equation, provided the Merkle proofs of all the coded symbols;

4. a special ensemble of random LDPC (low-density parity check) codes with
a constant parity equation size and a constant undecodable ratio under the
above hash-aware decoding algorithm, which protects all CMT layers equally.

4 Detailed Description of SPAR

In this section, we describe the four core components of SPAR: the construction
of the coded Merkle tree by the (honest) block producer, the sampling mecha-
nism of the light nodes, the decoding and alerting operations of the honest full
nodes, and the erasure codes used by SPAR. At the end of this section, we will
summarize the action space of each node in the network.

4.1 Construction of coded Merkle tree

In SPAR, an honest full node detects and proves incorrect-coding using the
membership proofs of all the d coded symbols in one parity equation and the
values of at least d − 1 of these coded symbols. Since any parity equation can
be compromised, a light node needs to make sure the membership proofs of all
the n coded symbols are available at honest full nodes. In other words, it needs
to make sure the entire Merkle tree is available.

To this end, we propose CMT. At a high level, CMT applies erasure coding
to every layer of the tree, where the data symbols of a layer are generated using
the hashes of the coded symbols of its child layer. This way, a light node can
check the availability of every layer through random samplings, whilst an honest
full node can detect and prove the incorrect coding at any layer, with the help
of the hashes of this layer provided at its parent layer.

More specifically, given a block of k data symbols, a rate-r (r ≤ 1) systematic
erasure code with an undecodable ratio of α is applied to generate n = k/r coded
symbols, where the first k are the original data symbols and the remaining n−k
are called parity symbols (hence the name systematic). Then the hashes of every
q coded symbols are batched as one data symbol for the next (parent) layer.
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Fig. 2: Coded Merkle tree for k = 16 data symbols using rate r = 1
2 erasure

codes. Each data symbol of a higher layer is constructed by batching the hashes
of qr = 2 data symbols and q(1− r) = 2 parity symbols of its child layer.

This yields a total of n/q data symbols for the next layer, which will be encoded
using a smaller (in terms of k) rate-r systematic code with the same undecodable
ratio. This iterative encoding and batching process stops once there are only t
(t > 1) hashes in a layer. These t hashes are the root of the CMT, and will be
included in the block header and published with the original data block.

CMT layer size reduces at a rate of qr. Thus, qr > 1 for CMT to converge.
In addition, to enable efficient sampling of both data and parity symbols (will
discuss next), batching is interleaved, namely, the q coded symbols whose hashes
are batched together consist of qr data symbols and q(1− r) parity symbols. An
example of CMT with k = 16, r = 1

2 , q = 4, and t = 4 is illustrated in Fig. 2.
Indeed, a classic Merkle tree is a special CMT with r = 1 and q = 2.

4.2 Sampling Mechanism of Light Nodes

In SPAR, a light node randomly samples the base layer coded symbols with their
Merkle proofs to decide the availability of the base layer. The special structure
of CMT allows them to further utilize these proofs to efficiently sample higher
layer symbols to decide the availability of higher layers.

Similar to a classic Merkle tree, the Merkle proof of a base layer symbol
in CMT consists of all the sibling hashes between this symbol and the root.
The only difference is that the number of sibling hashes per layer is now q − 1
instead of 1, which effectively provides the light node one data symbol from every
intermediate layer. Thus, when a light node randomly samples s distinct base
layer coded symbols, the associated Merkle proofs will automatically sample, at
no extra cost, s distinct data symbols from every intermediate layer w.h.p.

To properly check the availability of an intermediate layer, a light node should
also randomly sample about (1 − r)s parity symbols from this layer. To avoid
downloading extra Merkle proofs for these parity symbols and to minimize the
correlation between the samplings5, SPAR samples parity symbols of intermedi-
ate layers probabilistically: For every pair of parent and child intermediate layer,
if a parent layer data symbol is sampled, then with probability 1− r, one of its
q(1 − r) child parity symbols (thanks to interleaved batching) will be sampled
uniformly at random. Thus, the response size of one sampling request will be:

5 Otherwise, the malicious block producer can hide the highly correlated symbols of
the same layer together to reduce light nodes’ detection probability.
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Fig. 3: Merkle proof in CMT, and probabilistic sampling of parity symbols in
intermediate layers. The solidly circled symbols constitute a base layer coded
symbol and its Merkle proof. For the 2 dash-circled yellow parity symbols, with
a probability of 1− r = 0.5, one of them (with equal chance) will be included in
the proof for sampling purpose. So will the 2 dash-circled blue parity symbols.

b

k
+ [y(q − 1) + yq(1− r)] logqr

k

rt
, (2)

where b
k is the base layer symbol size, y is the hash size (e.g., 32 bytes), y(q−1) is

the size of the partial data symbol from an intermediate layer for Merkle proof,
yq(1− r) is the average size of probabilistically sampled parity symbol from an
intermediate layer, and logqr

k
rt is the number of layers. See Fig. 3 for sampling

response of a coded symbol on the based layer of the CMT in Fig. 2.
Finally, to counter selective disclosure conducted by the malicious block pro-

ducer, a light node will make the s requests separately, anonymously, with re-
placement, and with some delay between every two requests. This will prevent
the malicious block producer from selectively deceiving any particular light node,
or deceiving the set of light nodes that make requests at the beginning. There-
fore, every light node will have the same chance to catch data availability attack.

4.3 Hash-aware peeling decoder and incorrect-coding proof

A hash-aware peeling decoder is similar to conventional LDPC peeling decoder.
Given the hashes of all the n coded symbols and (1 − α)n coded symbols of
a layer, it iteratively solves degree-1 parity equations and check each decoded
symbol against its hash and associated parity equations (Algorithm 1). This way,
the detection and proof of incorrect-coding is minimized to one parity equation.

The key condition for the peeling decoder to work is that the hashes of all the
coded symbols are available. This is assured by CMT: By first downloading the
root, the decoder will have all the hashes needed to decode the previous layer.
Once this layer is successfully decoded, the decoded data symbols will provide all
the hashes needed to decode its child layer. This top-down decoding continues
until the data block is decoded, or incorrect-coding is detected at one of the
layers. To prove a failed parity equation that consists of d coded symbols, the
decoder only needs to provide the Merkle proofs of these coded symbols, and the
value of d− 1 coded symbols. Note that the higher the failed layer, the shorter
the Merkle proof of each symbol in the incorrect-coding proof.
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Algorithm 1: Hash-aware peeling decoding algorithm

1 Inputs: the hashes of all n coded symbols and (1− α)n coded symbols;
2 Initial check: checks all the degree-0 parity equations (i.e., those whose coded

symbols are all known). If any parity equation is failed, report an
incorrect-coding proof and exit;

3 while not all the k data symbols are recovered do
4 Find a degree-1 parity equation, which only has one unknown coded symbol;
5 Recover this coded symbol and verify it with its hash. If failed, report an

incorrect-coding proof and exit;
6 Check all the associated degree-0 parity equations. If any parity equation is

failed, report an incorrect-coding proof and exit.
7 end

In addition, the peeling decoder only works if 1) there are (1 − α)n coded
symbols available, and 2) that these coded symbols allow the recovery of all
the k data symbols. While the first condition is checked by light nodes through
random sampling, the second condition requires us to find, for every layer, a
erasure code whose undecodable ratio is α under peeling decoding. The best
performance is achieved if the codes are extremely sparse (with a small d) and
have a large α. We now present such an ensemble of LDPC codes.

4.4 Construction of Erasure Code

An (n, k) erasure code can be described by an n × (n − k) parity check matrix

H, where each column of H describes a parity equation, such that CH =
−→
0

for any valid codeword C. In addition, every stopping set of H corresponds to a
set of coded symbols whose hiding will prevent the full recovery of data symbols
using peeling decoder. For an n× (n− k) parity check matrix H, a set of rows
τ ⊂ [n] is called a stopping set if no column in Hτ has one non-zero element.
Here Hτ is the submatrix of H that only consists of the rows in τ .

Correspondingly, there is no parity equation that includes exactly one coded
symbol among those indexed by τ . Thus, if this set of coded symbols are hidden,
there is no degree-1 parity equation to recover them. Since the peeling decoder is
essential for us to construct small incorrect-coding proof, the undecodable ratio
α of a block is equivalent to the stopping ratio of H, which is the size of the
smallest stopping set divided by n.

While CMT admits any erasure codes, SPAR uses the method introduced in
[12, 23] and analyzed in [27] for its proved ability to create, with high probability,
parity matrices with a large stopping ratio. Given two integers c and d that
satisfies nc = (n − k)d, we first generate an nc × (n − k)d permutation matrix
J (a random row permutation of an nc × (n − k)d identity matrix). We then
partition J into n× (n− k) slices, where each slice is a c× d sub-matrix. Then
Hi,j = 1 if and only if slice-(i, j) contains an odd number of 1s, for i ∈ [1 : n]
and j ∈ [1 : n− k]. Such a random H has the following three critical properties:

1. It has a maximum row weight of c, and a maximum column weight of d;



Coded Merkle Tree: Solving Data Availability Attacks in Blockchains 11

2. It has a non-zero probability to have a stopping ratio of at least α∗, where α∗

is a critical stopping ratio inherent to this method and is independent of k;
3. It is NP-hard to find the minimum stopping set and determine the stopping

ratio of H.
Property 1 implies that the corresponding LDPC code has a maximum parity

equation size of d. Property 2 implies that we could provide the same undecod-
able ratio (thus same sampling requirements) for all layers. Both are desirable.

Nevertheless, Property 2 and 3 together imply that we, as the developers, are
not able to determine whether the LDPC codes we generate are good (α > α∗)
or not, for any reasonably large k (e.g., k = 1024).

Fortunately, this problem can be easily solved through a bad-code proof.
If an honest full node cannot fully decode the k data symbols after receiving
(1 − α∗)n coded symbols, then this code is bad, and its small undecodable set
has been found and hidden by a (very strong) malicious block producer. In this
case, the honest full node can prove this code bad by broadcasting the indices
of the α∗n coded symbols it is missing. Upon receiving and verify this bad-code
proof, all the nodes in the system reject the associated block, and regenerate a
code for the failed layer using an agreed random seed. This seed can be drawn
from a pre-defined number sequence or the block header of a previous block, so
that no consensus protocol is needed. Alternatively, distributed random number
generation algorithms such as [33] and [11] can also be used for strictly unbiased
randomness and consensus.

In other words, we solve the NP-hard problem of finding good codes by
exploiting the computational resources of malicious party. Once it finds a small
undecodable set and hides it, the system can easily detect this, reject the block,
and update the code. This way, the system will settle at a good code for every
layer eventually. As we will show in the next section, the probability of generating
good codes is extremely high, so that SPAR can settle at good codes very quickly
without having light nodes accept any fraud blocks. In addition, since bad code
is a rare event, a heavy incentive/punishment scheme can be applied to deter
false bad-code proof. Thus, the download and verification cost of bad-code proof
is amortized to negligible throughout the course of the system.

4.5 Summary of the Actions of Different Node Types

– Block producer (full node): (a) It generates CMT and broadcasts the
CMT root to all nodes, as well as broadcasts the entire original block (not
CMT, as it can be retrieved using the original) to the full nodes only. (b) On
receiving sample requests from the light nodes, respond to them.

– Light node: (a) On receiving a new CMT root (or a CMT root of a pending
block from a new full node), it makes separate, anonymous, and intermittent
sampling requests with replacement to full nodes who claim that the block is
available, as described in Section 4.2. (b) On receiving a sample, it broadcasts
it to all connected full nodes. (c) If a node receives all requested samples, it
assumes the block is available. (d) If a node does not receive all requested
samples within a fixed time, it “pends” the block (i.e., keeps it in pending
status). (e) If a node receives an incorrect-coding proof or bad-code proof, it
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rejects the block. In case of bad-code proof, it will also update the erasure
code of the failed layer.

– Other full node. (a) On receiving valid samples, it tries to recover the data
block through both downloading the original data block from the other full
nodes and collecting coded symbols forwarded by the light nodes. It will de-
code the tree from top to bottom using a hash-aware peeling decoder. (b) It
rebroadcasts the received valid samples. (c) If an incorrect coding or a bad
code has been detected, it will send the corresponding proof and reject this
block. (d) If it has received/fully decoded a data block and verified it, it will
declare the availability of this block to all other nodes and respond to sample
requests from light nodes.

5 Performance Analysis

5.1 Security

Theorem 1. In SPAR, a block producer cannot cause the soundness and agree-
ment to fail with a probability lower than

Pf ≤ max

{
(1− αmin)s, 2

max
i

[
H(αi)ni−ms log 1

1−αi

]}
.

Here ni and αi are the number of symbols and undecodable ratio of layer-i of
CMT, αmin , mini αi, and s is the number of base layer coded symbols a light
node samples.

Theorem 1, proved in Appendix A, implies that the security of SPAR in-
creases exponentially with the number of samples each light node takes (s),
when the number of light nodes (m) is linear with the block size.

5.2 Costs and Complexity

A light node has three download costs: 1) the header, which is the CMT root of
size t; 2) the random sampling, and 3) the incorrect-coding proof. In CMT, the
header is the CMT root of size t. The sampling cost can be computed using the
average parity-symbol-sampled Merkle proof size given in (2) to be:

s

(
b

k
+ y (2q − 1− qr) logqr

k

rt

)
= O(log k) = O(log b), (3)

where b is the size of a block, and the equations hold due to that 1) s is a
constant; and 2) b/k is the base layer symbol size, which is a constant. The
incorrect-coding proof size can be similarly computed as

(d− 1)b

k
+ dy(q − 1) logqr

k

rt
= O(log b), (4)

where the first term is the size of d−1 coded symbols, and the second term is the
size of d Merkle proofs. Finally, since the hash-aware peeling decoder decodes
one coded symbol using d−1 coded symbols in one parity equation, the decoding
complexity is O(1) per symbol and, thus, is O(b) in total.
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5.3 Choice of parameters
Our first key parameter is the coding rate r. A smaller r means more parity
symbols and thus a potentially larger undecodable ratio and less sampling. But
it will also increase the height of CMT, the Merkle proof size, and the decoding
complexity. For a reasonable tradeoff, we choose r = 0.25.

Given r, the next two parameters we should decide are a pair (c, d) that
satisfies c/d = 1 − r = 0.75 for the random LDPC code generator, where d is
the maximum parity equation size. This gives us c = 0.75d and requires us to
find the critical undecodable ratio of the ensemble as a function of d, which is
provided in Table 2 based on the analysis in [27].

Table 2: The critical undecodable ratio α∗ as a function of d
d 4 8 12 16 20

α∗ 0.0795 0.124 0.111 0.0981 0.0877

Evidently, d = 8 maximizes the critical undecodable ratio. In addition, it also
admits a small incorrect coding proof that only requires only 7 coded symbols
and 8 Merkle proofs. As a result, we choose (c, d) = (6, 8).

5.4 How quickly does SPAR settle at a good erasure code?

Due to random code generation, each layer of SPAR eventually settles at a good
code (with an undecodable ratio of at least α∗) after a few bad codes have been
deployed by the system and potentially utilized by malicious block producer to
hide the data. We study the number of such attacks (note that they will never
succeed) and updates before SPAR can settle: intuitively, this number can be
computed as (1 − P (α < α∗))−1 − 1, where P (α < α∗) is the probability that
a randomly generated code has an undecodable ratio smaller than α∗ = 0.124.
Using an upper bound on P (α < α∗) characterized in [27] we can derive the
settlement speed of SPAR as below. We note that most of the layers of CMT
will immediately settle at a good code upon launching. The only exception is
the layer with n = 256, which will settle after 7.7 bad codes, but without any
fraudulent blocks been accepted. The proof is in Appendix B.

Theorem 2. Using the random (6, 8)-LDPC code in Section 4.4, the expected
number of bad erasure codes (α < α∗ = 0.124) a CMT layer with n coded symbols
will use before it settles at a good code (α ≥ 0.124) is approximated in Table 3.

Table 3: Number of bad code before settlement.
n 256 512 1024 2048 4096 > 4096

P (α < α∗) 0.886 5.3e-2 2.0e-3 1.3e-3 3.2e-4 <3.2e-4

# bad codes 7.7 0.06 0.002 0.001 0.0003 < 0.0003

6 Implementation for Bitcoin and Experiments

We developed in Rust a Coded Merkle Tree library [2] for Parity Bitcoin [34]
clients (see Appendix C for more details). Our library integrates seamlessly into
the current mainnet implementation, and requires minimal change on the block
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data structure (only need to add CMT root to the block header). Note, how-
ever, that this change is incompatible with existing Bitcoin clients. Developing
a SPAR-protected Bitcoin testnet and a Bitcoin Improvements proposal (for
Bitcoin Core) are ongoing research activities outside the scope of this paper.

We combine the CMT library with the performance analysis in Section 5, and
numerically evaluate SPAR’s light node download costs (header, sampling, and
incorrect-coding proof) and full node decoding speed, for a wide range of block
sizes (Table 4), and compare them with the 2D-RS based solution proposed in [9]
using its C++/Python implementation [13, 6].

Table 4: Experiment Parameter Configuration
parameter value notes

symbol size (B) 256

base layer k 212 to 222 block size is thus 1 to 1024 MB

coding rate r 0.25 thus n = 4k

hash size (B) 32 SHA256 is used

target confidence 99% each light node keeps sampling until it is 99% confident

SPAR specific parameters

LDPC sparsity (6, 8) each parity equation has at most 8 coded symbols

stopping ratio β 0.124 0.124n symbols must be hidden to prevent decoding

batching factor q 8 CMT layer size reduction rate is qr = 2 as ordinary trees

CMT root size t 256 hashes the same as 2D-RS header size for 1MB blocks

Header (Fig. 4(a)): A SPAR light node only downloads fixed t = 256 hashes
in header, whilst 2D-RS requires 1 + 2

√
n. Thus, the header download cost of

SPAR becomes much smaller than 2D-RS with growing block size. For a 64MB
block, the cost is only 0.01% of the block size in SPAR, but is 0.1% in 2D-RS.

Incorrect-coding proof (Fig. 4(b)): A SPAR incorrect-coding proof only
involves d−1 = 7 coded symbols and their Merkle proofs, whilst 2D-RS requires√
k. Thus, the incorrect-coding proof download cost of SPAR becomes much

smaller than 2D-RS with growing block size. For a 64MB block, the cost is only
0.051% of the block size in SPAR, but is 0.48% in 2D-RS.

Sampling cost (Fig. 4(c)): 2D-RS has a higher undecodable ratio of 25%
compared to SPAR’s 12.4%. Thus, for 99% confidence, s = 17 distinctive sam-
ples are enough in 2D-RS, whilst SPAR requires s = 35 if the adversary is strong
enough to find, with NP-hardness, the size-0.124n stopping set. But under a re-
alistically weak adversary that randomly selects CMT symbols to hide, SPAR
only requires s = 8 because our LDPC ensemble can tolerate an average of 47%
missing symbols. On the other hand, the over-sampling of each layer increases
SPAR’s sampling cost. Thus, although both techniques offer O(log k) sampling
costs that quickly reduces with growing block size, the cost of SPAR is about
10∼16 (resp. 2.5∼4) times of 2D-RS under strong (resp. weak) adversaries. How-
ever, in practice, one can further reduce SPAR sampling cost by increasing the
header size t, thus reducing the size of the Merkle proof of each symbol.

Decoding speed (Fig. 4(d)): SPAR’s sparse and binary encoding, at its
current implementation level is already over 10 times faster than 2D-RS for all
the tested block sizes.
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(a) Header cost (b) Incorrect-coding proof size

(c) Sampling cost (d) Decoding speed

Fig. 4: Communication costs and decoding speed of SPAR and 2D-RS.

7 Conclusion and Discussions
By iteratively applying a special ensemble of LDPC codes to every layer of a
Merkle tree and batching the hashes of each coded layer into the data symbols
of the next layer, we invented a novel hash accumulator called coded Merkle
tree (CMT). Built upon CMT, we proposed a novel data availability verification
system called SPAR, which allows the availability and integrity of the entire tree
to be checked at constant costs.

SPAR can play a key role in scaling blockchain systems that incorporate
light nodes because it empowers these nodes with real-time verification of data
availability and integrity at small and constant costs. SPAR can also be used to
scale the communication of sharded blockchain systems (e.g., [24, 20, 21]), where
full nodes of one shard operate as light nodes of other shards, as SPAR allows
them to efficiently check the availability and integrity of blocks in other shards.

Integrating SPAR into existing blockchain systems requires minimum changes
and no extra bandwidth consumption. An honest block producer only needs to
broadcast the original data block as usual and attach the CMT root in the block
header. This is sufficient for other full nodes to reproduce the CMT and offer
sampling services for light nodes. Our library for CMT in Rust for Parity Bitcoin
clients maintains the same API as the standard Merkle tree module. Noting
that classic Merkle trees are indeed special CMTs with coding rate r = 1 and
batching factor q = 2, our library readily replaces the standard module and is
backward compatible.
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A Proof of Theorem 1

Proof. Soundness: Soundness fails if a light node thinks that a block is available,
and no full node is able to reconstruct the entire coded Merkle tree. We note that
the reconstruction fails if any layer of the CMT cannot be recovered correctly.
Let us focus on a single layer i with ni coded symbols and an undecodable ratio
of αi, and assume that the malicious block producer hides α fraction of the coded
symbols (and does not respond to requests for those symbols).

Case-1: Consider the case of α ≥ αi. The probability of soundness failure
for a node is given by the probability that a node receives all s symbols that it
samples, this probability is (1− α)s ≤ (1− αi)s ≤ (1− αmin)s.
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Case-2: Consider the case of α < αi. The soundness failure occurs if a full
node cannot decode the entire block or is unable to furnish a incorrect-coding
proof. The full node will fail to accomplish these tasks only when it is able to
receive fewer than 1−αi fraction of symbols. Define Zi to be the total number of
distinct symbols collected by the honest full node (Zi ∈ {0, 1, .., ni}). Let m be
the total number of light nodes, then m · s is the total number of i.i.d. samples.
Now we have

P (Zi ≤ (1− αi)ni) ≤
(
ni
αini

)
(ni − αini)ms

nms
, (5)

≤ 2H(αi)ni(1− αi)ms, (6)

= 2
H(αi)ni−ms log 1

1−αi ≤ 2
max
i

[
H(αi)ni−ms log 1

1−αi

]
. (7)

Here (5) is by counting the number of sampling instances that provide less then
(1−αi)ni distinct symbols. H(p) = p log 1

p +(1−p) log 1
1−p is the binary entropy

function. It is apparent that we would need m large to make the above bound
vanish exponentially with s.

The probability of soundness failure is smaller than the maximum probability
of the two cases.

Agreement: We will argue here that soundness implies agreement for our
protocol. As defined, soundness ensures that a honest full node is able to decode
the block. Once a honest full node decodes the block, it will let all light nodes
know that it has that block. The light nodes have either already accepted the
block or have “pend”-ed the block (the light nodes could not have rejected
the block since it is a valid block). The light nodes that pended the block will
query with the honest full node and eventually accept the block. Thus soundness
implies agreement (since now every light node agrees on the availability of the
block).

B Proof of Theorem 2

Based on the proof of Theorem 8 of [27], we know that for an (n, k) LDPC
code that is randomly chosen from a (c, d) ensemble, described in Section 4.4,
the probability that the stopping distance of the code is smaller than α∗n is
upper-bounded by

P (αn < α∗n) ≤ min

{
inf

0<δ<α∗

(
n(α∗ − δ)e

n max
θ∈[δ,α∗]

γ(θ)
+

δn−1∑
i=1

Ii

)
, 1

}
(8)
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where for c = d(1 − r), h(θ) = −θ log θ − (1 − θ) log(1 − θ), and x0 as the only

positive solution to x(1+x)d−1−x
(1+x)d−dx = θ,

γ(θ) ,
c

d
log

(
(1 + x0)d − dx0

xθd0

)
− (c− 1)h(θ),

Ii ,

(
n

i

)(n( cd+ δc
2 −

δc
d )

b ic2 c

)
(2d− 3)ic(

nc
ic

) .

For α∗ = 0.124, the above upper bound for small n (e.g., n = 256) becomes
degenerated (i.e., reduces to the trivial bound of 1). In order to obtain a good
approximation for all the values of n, we approximate the upper bounds on
P (α < 0.124) using a slightly smaller undecodable ratio of 0.116. Then, we
evaluate the upper bounds on P (αn < 0.116n) in (8), for all the considered
values of n in Theorem 2 to obtain the probabilities in the second row of Table 3.

We note that since 0.116 is very close to 0.124, SPAR’s inherent oversampling
of intermediate layers will provide sufficient protection for data availability on
these layers, so that the light node sampling cost will not increase.

C Coded Merkle Tree Library

We developed in Rust a Coded Merkle Tree library [2] for Parity Bitcoin [34]
clients. We modify the data structure of the block header to add a new field
coded merkle roots hashes, which are the hashes of the coded symbols on the
last level of the coded Merkle tree constructed from this block.

To use the Coded Merkle Tree library on a block, we require the following
input parameters from the users:
– BASE SYMBOL SIZE: size of a symbol on the base level, and hence the number

of systematic symbols on the base level.
– AGGREGATE: number of hashes to aggregate into a symbol on the next level.
– HEADER SIZE: number of hashes stored in the block header. This also decides

the total number of levels in the coded Merkle tree.
– Codes for all levels of coded Merkle tree, in forms of sparse representations of

their parity-check matrices.
Given the above parameters, Coded Merkle Tree implements the following key

functionalities:
– coded merkle roots: construction of the coded Merkle tree from the block con-

tent.
– merkle proof: generating the Merkle proof for any symbol on any level of coded

Merkle tree. By design, this returns a set of symbols on the higher level.
– sampling to decode: sampling symbols on the base level, together with their

Merkle proofs.
– run tree decoder: decode the entire coded Merkle tree level by level from the

roots. Each level is decoded by running a hash-aware peeling decoder, using
the decoded symbols on the previous level as the hash commitments.
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– generate incorrect coding proof: 1) when a coding error is detected, this func-
tion returns d − 1 symbols in a parity equation, and Merkle proofs for all d
symbols in that equation; 2) when the peeling process gets stuck before all
symbols are decoded, this function returns the indices of the missing symbols
as a stopping set.


