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Abstract. We demonstrate that XOR Arbiter PUFs with an even num-
ber of arbiter chains have inherently biased responses, even if all arbiter
chains are perfectly unbiased. This rebukes the believe that XOR Ar-
biter PUFs are, like Arbiter PUFs, unbiased when ideally implemented
and proves that independently manufactured Arbiter PUFs are not sta-
tistically independent.
As an immediate result of this work, we suggest to use XOR Arbiter PUFs
with odd numbers of arbiter chains whenever possible. Furthermore, our
analysis technique can be applied to future types of PUF designs and
can hence be used to identify design weaknesses, in particular when us-
ing Arbiter PUFs as building blocks and when developing designs with
challenge pre-processing. We support our theoretical findings through
simulations of prominent PUF designs. Finally, we discuss consequences
for the parameter recommendations of the Interpose PUF.
Investigating the reason of the systematic bias of XOR Arbiter PUF, we
exhibit that Arbiter PUFs suffer from a systematic uniqueness weakness.
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1 Introduction and Related Work

Physically Unclonable Functions (PUFs) are “biometrics” for integrated circuits.
Like fingerprints for humans, PUFs should expose (somewhat) unique character-
istics of a circuit instance that can be used to identify or even authenticate a par-
ticular circuit. The specific characteristics of a circuit are usually formalized as
input-output (“challenge-response”) behavior. Strong PUFs have the additional
requirement that each circuit has such a large number of features (input-output
pairs) that it is impossible for an attacker to copy and imitate all features.

Research in strong PUFs has spent much attention on Arbiter PUFs, which
were introduced by Gassend et al. [3], and its countless variations. While the
Arbiter PUF does have an exponentially large challenge-space, Gassend et al.
noted that its behavior can be characterized by a hyperplane and is thus an
easy target for prediction algorithms trained with machine learning on observed
examples. This raises legitimate concern, as in many usage scenarios, such train-
ing data could be easily obtained by a man-in-the-middle attacker. Sölter and



Rührmair et al. [13,8] demonstrated that prediction is even possible when mul-
tiple Arbiter PUFs are used and only the XOR of the responses is returned.
Their attack on the XOR Arbiter PUF demonstrated that training of a model
is feasible, even though the PUF behavior cannot be characterized by a single
hyperplane anymore. This also holds true for the Lightweight Secure PUF by
Majzoobi et al. [6] that modifies a given challenge before passing it to an under-
lying XOR Arbiter PUF. Most recently, Nguyen et al. [7] proposed the Interpose
PUF, essentially consisting of two XOR Arbiter PUFs. However, using deep neu-
ral networks, successful attacks on XOR Arbiter PUF and Interpose PUF have
been claimed [11].

Side-channel-based attacks on XOR Arbiter PUFs have also been successfully
mounted. In 2013, Delvaux and Verbauwhede [2] modeled a single Arbiter PUF
based on the response reliability. In 2014, Tajik et al. [14] were able to extract
physical features of the Arbiter PUF circuit using photonic emission analysis,
allowing them to deduce a mathematical model and prediction algorithm for
the PUF. In 2015, Becker [1] demonstrated an attack against the “4-way” XOR
Arbiter PUF, where four variations of the same challenge are fed in the same
Arbiter PUF and the parity of the four responses is output to the user. The attack
trains a model using an evolution-strategy algorithm based on the reliability of
responses rather than their bit-value.

Hardware implementations of Arbiter PUFs have been extensively studied.
Katzenbeisser et al. [4] conducted an analysis of Arbiter PUFs implemented
in ASIC, evaluating the reliability of responses and sensitivity to temperature
change. In a similar study, Maes et al. [5] studied the uniqueness and reliability
of Arbiter PUFs in ASIC under the influence of ageing. Sahoo et al. [10] studied
the bias inherent to the implementation of a PUF design, considering FPGA
implementations of the Arbiter PUF.

This paper is organized as follows. Sec. 2 introduces the additive delay model
and contains the theoretical analysis of XOR Arbiter PUF bias. In Sec. 3, we
present simulation results to support our analysis and discuss the results and
consequences. We conclude the paper in Sec. 4.

2 Bias Analysis

2.1 Background: Additive Delay Model

An Arbiter PUF consists of two symmetric signal paths going through n stages
before reaching the arbiter. At each stage, the signals may be interchanged,
depending on the challenge bit that is assigned to this particular stage. The
arbiter will output whether there is a signal first on the top or bottom line of its
input. An XOR Arbiter PUF consists of k parallel Arbiter PUFs, but only the
parity (XOR) of their responses is output to the user. A schematic representation
of a 2-XOR Arbiter PUF can be found in Fig. 1.

To model the behavior of XOR Arbiter PUFs, the additive delay model is
widely and successfully used [3,13,8,6]; Delvaux and Verbauwhede [2] give a
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Fig. 1: Schematic representation of an XOR Arbiter PUF with k = 2 parallel
arbiter chains.

physical motivation. Modeling results above 99% accuracy, as obtained by the
modeling attacks mentioned above, show that the additive delay model highly
accurately models the physical Arbiter PUF.

Written using -1 and 1 to represent bit values, the additive delay model states
that any instance of the Arbiter PUF with n stages can be modeled as an affine
hyperplane,1

r(c) = sgn [〈w,x〉+ w0] = sgn

[(
n∑

i=1

wixi

)
+ w0

]
, (1)

where w ∈ Rn and w0 ∈ R model the physical properties of the particular
instance and x is a function of the given challenge bits c defined by xi =
ci · ci+1 · · · cn. Note that while the threshold w0 relates to the bias Ec [r(c)]
of the Arbiter PUF, the relation of these two values is not linear, as small per-
turbation of the threshold does not change the bias. We approximate the relation
of threshold and bias below.

Building on the Arbiter PUF model, a k-XOR Arbiter PUF can be modeled
by the product2 of k Arbiter PUF models,

r(c) = sgn

k∏
l=1

n∑
i=1

wl,ixi + wl,0. (2)

In the additive delay model, the k ·n parameters wl,i and the wl,0 are assumed to
be normally distributed3. XOR Arbiter PUF variants that transform the input
challenge before processing it with the arbiter chains, e.g. the Lightweight Secure
PUF [6], can be modeled by appropriately augmenting the definition of x.
1 The sgn function returns the sign of the argument. In our setting, sgn 0 will only
occur with probability zero; for completeness we define sgn 0 = 1.

2 Notice that when using -1 and 1 to represent bit values, the standard product of bit
values corresponds to the logical XOR operation.

3 In fact, some parameters have different variances [2], but this is immaterial to the
discussion in this paper.



2.2 Analysis

XOR Arbiter PUF bias can be analyzed by expanding the product of the additive
delay model (see (2)) to observe the resulting threshold term. In order to focus
on the systematic bias of XOR Arbiter PUF designs, we assume each Arbiter
PUF to be independently chosen and unbiased.

The term
∏k

l=1

∑n
i=1 wl,ixi in (2) is a polynomial of degree k over variables

xi that take values in {−1, 1}. Hence, r(c) is a polynomial threshold function of
degree at most k, including some monomials of the form xk

i ·
∏k

l=1 wl,i. If (and
only if) k is even, these monomials contribute to the threshold term. When k
is odd, no product will degenerate into a constant term, i.e. perfectly unbiased
Arbiter PUFs will yield a perfectly unbiased XOR Arbiter PUF. As an example,
a 2-XOR Arbiter PUF can then be modeled as

r(c) = r1(c) · r2(c) = sgn

∑
i,j
i 6=j

w1,iw2,jxixj +
∑
i,j
i=j

w1,iw2,j

 . (3)

It can be seen that even assuming unbiased building blocks, we obtain a non-
zero threshold term of

∑n
i=1 w1,iw2,i. While the expectation of this value in the

manufacturing process is zero, a high variance causes the 2-XOR Arbiter PUF to
likely have significant bias. In other words, any 2-XOR Arbiter PUF consisting
of two unbiased arbiter chains is biased with probability 1.

Theorem 1. The responses of independently chosen unbiased Arbiter PUFs
queried on the same challenge are not statistically independent.

Proof. Let r1, r2 be models of unbiased Arbiter PUFs with parameters w(1)
i and

w
(2)
i for 1 ≤ i ≤ n chosen independently at random and w

(1)
0 = w

(2)
0 = 0 as de-

fined in (1). As demonstrated in (3), the threshold of r1(c) ·r2(c) is non-zero and
hence4 Pr [r1(c) · r2(c) = 1] 6= 1/2. However, assuming statistical independence
we have Pr [r1(c) · r2(c) = 1] = Pr [r1(c) = r2(c)] = 1/2. ut

These results are relevant for novel designs based on several XOR Arbiter
PUFs, like the Interpose PUF, as well as for designs based on a single XOR
Arbiter PUF, but with novel transformation of the challenge. As an example,

4 An approximation of the bias Ec [r(c)] in dependence of the threshold value can
be obtained using the Berry-Esseen-Theorem to approximate

∑
i,j w1,iw2,jx1x2 for

i 6= j as a Gaussian random variable with variance σ2 over uniformly chosen random
challenges, resulting in Ec [r(c)] ≈ erf

(∑n
i=1 w1,iw2,i

σ
√
2

)
;the value

∑n
i=1 w1,iw2,i in

turn follows (in the manufacturing random process) a distribution composed of the
sum of product-normal distributions, which has increasing variance for increasing
n. Extending the setting, for higher (but even) k the distribution narrows as the
variance of the product-normal distribution narrows. The later effect can be observed
in our simulations, cf. Fig. 2.



Thm. 1 can easily be extended to cover all input transformations that result in
the same challenge for each arbiter chain.

Finally, we emphasize again that the analytical results hold regardless of any
implementation weakness and thus are a systematic weakness of the Arbiter
PUF design.

3 Discussion

3.1 Simulation Results

We confirmed the systematic XOR Arbiter PUF bias in simulations5 for different
XOR Arbiter PUF sizes and input transformations, including the Interpose PUF.
All simulations are based on the additive delay model with standard Gaussian
weights and were conducted using unbiased arbiter chains. The distribution of
the systematic bias is based on sampling 100 instances each; the bias of each
instance is estimated using 1,000,000 responses to uniformly random challenges.
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Fig. 2: Analysis results for simulated 64-bit k-XOR Arbiter PUFs, k-Lightweight
Secure PUFs and k-Permutation XOR Arbiter PUFs build from unbiased Arbiter
PUFs. For each type and size, 5000 instances were sampled and queried with one
million uniformly random challenges each.

In Fig. 2 we show the estimated bias distribution for XOR Arbiter PUFs
and Lightweight Secure PUFs, which confirm our theoretical findings. As ex-
pected, the systematic bias is only present for PUFs with an even number of
arbiter chains, while PUFs with an odd number of arbiter chains remain (sys-
tematically) unbiased. The bias variance becomes smaller as k increases. The
statistical significance of these findings can be confirmed by applying a bias test
like the one specified in NIST’s SP-800-22 test suite [9]: while our simulation
5 The software used for simulation and analysis publicly available as free software at
https://github.com/nils-wisiol/pypuf/tree/2020-systematic-bias.

https://github.com/nils-wisiol/pypuf/tree/2020-systematic-bias


passes the tests on 99% of XOR Arbiter PUF instances whenever k is odd; it
fails for almost all instances when k = 2, and fails for the majority of instances
when k = 4 (see Fig. 2). This is also in line with our theoretical findings and
simulation results, as we expect the effect to become smaller as k increases.

We hence recommend using an odd number of arbiter chains to avoid poten-
tial additional attack surface and especially discourage the use of two or four par-
allel chains. These recommendations also apply whenever (XOR) Arbiter PUFs
are used as building blocks for larger PUFs, such as is the case in the Interpose
PUF, as bias in intermediate values can result in increased predictability.

The bias distribution also suggests that the input transformation as done by
the Lightweight Secure PUF [6] compensates the systematic bias to some extend,
which may be a contributing factor to the increased machine learning resistance
[8,15] of the Lightweight Secure PUF. On the other hand, the Lightweight Se-
cure PUF and Permutation XOR Arbiter PUF [15] seems to introduce bias for
the case k = 3. Such effects should be considered when designing novel input
transformations.

Our findings also extend to the recently proposed Interpose PUF [7], which is
a combination of two XOR Arbiter PUFs and was designed to be resilient against
all state-of-the-art modeling attacks, while being CMOS-compatible. Consisting
of two interposed XOR Arbiter PUFs, our simulation shows that the “down”
XOR Arbiter PUF plays an important role for the systematic bias, while the
“up” XOR Arbiter PUF only has minor influence on it (see Fig. 3).

Given these findings, we provide additional evidence for the original author’s
advice to use the Interpose PUFs with an odd number of arbiter chains in the
lower layer. Furthermore, as our findings are applicable any XOR Arbiter PUF,
we extend the parameter recommendation to include the upper layer as well.
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Fig. 3: Analysis results for simulated 64 bit (kup, kdown)-iPUF instances build
from unbiased Arbiter PUFs. For each size, 5000 instances were sampled and
queried with one million uniformly random challenges each.



3.2 XOR Arbiter PUF Bias and Arbiter PUF Uniqueness

Our results above, stated in terms of the bias of XOR Arbiter PUFs, are closely
related to the uniqueness of Arbiter PUFs. The theoretical and simulation re-
sults show that any 64 bit 2-XOR Arbiter PUF has significant bias with high
probability, even when implemented ideally (i.e., composed of unbiased Arbiter
PUFs). In terms of uniqueness this means that any independently chosen pair
of (ideal) Arbiter PUFs has, with high probability, low uniqueness, as perfectly
unique Arbiter PUFs are statistically independent and hence their XOR Arbiter
PUF would not have any bias. It must be noted though, that, as per the proper-
ties of the parity, the uniqueness will only play out in a systematic bias whenever
k is even, hence our recommendation to use XOR Arbiter PUFs with odd k.

The inherent low uniqueness of Arbiter PUFs, independent of their imple-
mentation, may relate to findings by Schaub et al. [12] that claim an upper
bound to the entropy of Arbiter PUFs at O(n2).

4 Conclusion

In this paper, we exhibited that XOR Arbiter PUFs with an even number of
arbiter chains have systematic bias, independently of implementation issues. As
bias is an inherent weakness to any PUF, parameter recommendations for XOR
Arbiter PUFs, Lightweight Secure PUFs, and Interpose PUFs should no longer
include an even number of arbiter chains to remove any additional attack surface.

For future designs, our findings mandate additional testing: it is not sufficient
to choose building blocks independently of each other; also their uniqueness must
be studied implementation-independent. For designs based on the Arbiter PUF
design, our methodology based on the additive delay model may be applicable
and facilitate theoretical study of threshold and bias values. For other designs,
a different model or empirical testing based on simulation may be necessary.

In future work, we will investigate if other strong PUFs also suffer from
implementation-independent uniqueness weaknesses. It should also be investi-
gated if the bias of an XOR Arbiter PUF can assist a modeling attack.

The authors like to thank Ulrich Rührmair for encouraging this research.
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