
Load Balancing for Sharded Blockchains

Naoya Okanami1,2, Ryuya Nakamura3,2, and Takashi Nishide1

1 University of Tsukuba, Ibaraki, Japan.
2 LayerX Inc., Tokyo, Japan.

{naoya.okanami,ryuya.nakamura}@layerx.co.jp
3 The University of Tokyo, Tokyo, Japan.

Abstract. Sharding is an approach to designing a highly scalable
blockchain. A sharded blockchain achieves parallelism by dividing con-
sensus nodes (validators) into groups called shards and making them
process different transactions in each shard. In this paper, we economi-
cally analyze users’ behavior on sharded blockchains and identify a phe-
nomenon that users’ accounts and smart contracts eventually get con-
centrated in a few shards, making shard loads unfair. This phenomenon
leads to bad user experiences, such as delays in transaction inclusions
and increased transaction fees. To solve the above problem, we propose
a load balancing framework in sharded blockchains in which accounts
and contracts are frequently reassigned into shards to reduce the differ-
ence of loads between shards. We formulate the contract reassignment as
an optimization problem and present the algorithm to solve it. Further,
we apply the framework to an existing sharding design (Ethereum 2.0)
and modify the protocol to do load balancing. Finally, we simulate the
protocol and observe smaller transaction delays and fees.

Keywords: Sharding, Blockchain, Load balancing, Game theory, Heuris-
tics, Simulated annealing.

1 Introduction

Traditional distributed ledgers do not increase transaction processing capacity,
no matter how many participants exist in the network. In order to improve the
scalability of the distributed ledger, methods such as off-chain protocols and Di-
rected Acyclic Graph (DAG) based blockchains and sharded blockchains have
been proposed. One of them, sharding, implements parallelization by dividing
validators that verify transactions into different groups and processing different
transactions in each shard. Sharding was first proposed at Elastico [12], followed
by sharded blockchains such as OmniLedger [11], Chainspace [4], and Rapid-
Chain [16]. It will be used in Ethereum [7] in the future.

There are two blockchain transaction models, the Un-spent Transaction-
Output (UTXO) model and the account/balance model. The blockchain with
the account/balance model is more compatible with implementing smart con-
tract functions, and Ethereum most used among blockchains that currently im-
plement smart contracts adopts the account/balance model.

2 Naoya Okanami, Ryuya Nakamura, and Takashi Nishide

Sharded blockchains with the account/balance model allow users to choose
the shard to which their account belongs freely. Users spend less fee and have
less latency when their accounts belong to the same shard as the contracts that
frequently trade with them. Therefore, in reality, it is easier to collect accounts
for shards to which popular contracts belong. As a result, the load on the shard
is increasingly imbalanced. On the other hand, in a shard, the higher the load
is, the more the fee increases. Users don’t want to use shards with high fees,
so no extreme imbalances occur. In other words, when users act to improve
their user experience (UX), there is no extreme imbalance that all accounts are
concentrated in one shard, and some load balancing is performed. A user can
actually have multiple accounts, but so does this.

We thought that, due to these two characteristics, the account behaves self-
ishly, and the account assignment state converges approximately to a state where
all users have no incentive to go to another shard (ε-Nash equilibrium). The
sharding protocol already has a mechanism that performs load balancing when
the user acts selfishly. In theoretical computer science and distributed systems,
the fact that load balancing is performed by users acting selfishly as described
above is called selfish load balancing [14, 5, 3].

If the load on each shard is imbalanced, sharding protocols have the following
issues.

– Due to the load imbalance, the hardware specs required for the validator
will be higher than when the load is balanced. This prevents new validators
from entering.

– The gas price differs across shards and worsen the UX of cross-shard com-
munications.

– Validators favor an environment, e.g., on Amazon Web Services (AWS),
which can efficiently scale in/out.

– The incentive analysis around parameterization of rewards or gas costs might
become complicated.

Monoxide is one of the sharded blockchains in the account/balance model [15].
When a popular decentralized application (Dapps) exists in a sharded blockchain
with smart contract functionality, the load is concentrated in the shard to which
the application belongs, which is stated in the Monoxide paper as a “single
address hotspot” issue. The Monoxide paper mentions a solution by the up-
per layers, where application operators create one address for each shard and
distribute the load.

However, as explained earlier, there is not only an imbalance because there
is a heavily loaded account. If the user is selfish, the imbalance will be more
widespread. We show that by modeling users, the load is concentrated in a few
shards, and selfish load balancing is performed and converges to the ε-Nash
equilibrium.

Since selfish load balancing is one of the congestion games in terms of game
theory, it cannot equalize shard loads. If the shard load is not equal, the over-
all UX is worse than when the load is equal. To solve the above problem, we

Load Balancing for Sharded Blockchains 3

propose in-protocol load balancing to reduce shard load imbalance by frequently
reassigning accounts within the protocol.

With frequent account reassignments, even if a user self-changes a shard, it
is immediately reassigned to another shard by the protocol. Since there is a fee
for the act of moving the shard itself, the incentive for the user to change the
shard themselves becomes very small, and the user does not want to change the
shard themselves.

In order to do in-protocol load balancing, we formulate load balancing as
an optimization problem. Moreover, as a result of the formulation, it is shown
that this problem is NP-hard. Since it is NP-hard, there is no polynomial-time
algorithm for finding an exact solution for the load balancing problem. Thus,
it is necessary to use an approximation algorithm or heuristics, but it is very
computationally expensive to obtain a good solution. Doing the calculation itself
on-chain is not worth the cost. Therefore, in-protocol load balancing is done in a
competition format where the problem is disclosed and delegated to the outside,
and the best solution is adopted. This provides a better solution than on-chain.

We define the objective function of the optimization problem to minimize
the load of the shard with the highest load. The reason is that the minimum
computer specifications required to become a validator are proportional to the
maximum load that can occur in a shard. In addition, it is because the UX of
many accounts deteriorates because the commission becomes high, and the delay
occurs in the shard where the transaction is concentrated.

Finally, we apply this load balancing framework to Ethereum 2.0 [15] and
construct an algorithm that solves the load balancing problem using simulated
annealing, which is one of metaheuristics. In addition, comparing selfish load
balancing with the proposed algorithm, we show that the total transaction fee
and total transaction delay can be smaller.

In summary, our contributions are:

– We show that the load concentrates on a small number of shards when the
user acts selfishly in sharded blockchains with the account/balance model.

– We show that shard imbalance increases user transaction fees and latency.
– In order to solve this problem, we propose in-protocol load balancing, which

performs load balancing by reassigning accounts in sharded blockchains. In-
protocol load balancing formulates load balancing as an optimization prob-
lem, and a blockchain can obtain a good solution by competing players with
the solution in a competition.

– We apply this framework to Ethereum 2.0, an existing sharding design, and
demonstrate that transaction fees and latencies can be reduced over selfish
load balancing.

2 Preliminaries

2.1 Task assignment problems (TAPs)

There is a mathematical optimization problem called task assignment problems.
For example, there are the following problems.

4 Naoya Okanami, Ryuya Nakamura, and Takashi Nishide

M resources and N tasks are given. It takes ci to execute task i. Further,
when task i and task j are assigned to different resources, the resources
to which task i and task j are assigned cost dij and dji, respectively.
Each task can be assigned to one resource. What is the shortest time to
complete all the tasks?

TAPs are well-known NP-hard problems in the field of mathematical opti-
mization, and various algorithms for solving them have been proposed [13, 6,
8].

2.2 Cross shard transaction

A transaction sent from one shard to another is called a cross-shard transaction.
A cross-shard transaction has to go through another shard or parent chain and
has a higher fee and latency than a single-shard transaction. For example, the
problem of how to handle hotel room reservations and train seat reservations
atomically is called the train-and-hotel problem. In sharding, it is a problem of
handling contracts in one shard and contracts in another shard atomically.

2.3 Ethereum 2.0

The Ethereum community is now actively working on the Ethereum 2.0 project [10],
which upgrades the Ethereum protocol to introduce proof-of-stake, sharding,
etc. Ethereum 2.0 consists of one beacon chain and multiple shard chains.
A shard chain is a sharded blockchain, and a beacon chain is a blockchain that
manages the shard chain. Beacon chain mediates cross-shard communications.
For simplicity, we assume smart contracts exist on the shard chains but not on
the beacon chain.

Yank operation Ethereum 2.0 solves the train-and-hotel problem by introduc-
ing an operation called yank [2]. A yank is to delete a contract on one shard,
issue a transaction receipt, and instantiate the contract on another shard. Then
perform some operation on the shard to which it is yanked. For example, yank
a contract to reserve a room for a hotel to a shard that has a contract to reserve
a train and make an atomic reservation.

3 In-protocol Load Balancing

The process flow of in-protocol load balancing is as follows.

1. Competition coordinators collect necessary transaction load information of
accounts.

2. Coordinators formulate load balancing as an optimization problem.
3. Competition participants calculate a good account assignment.
4. Coordinators move accounts based on the new assignment.

Load Balancing for Sharded Blockchains 5

3.1 Problem Definition

We formulate minimizing the highest load among loads of shards as an optimiza-
tion problem. Let S be a mapping from account to shard id. Let lij be the load
of a shard that accounts i and j belong to when they belong to the same shard.
Further, let l′ij be a load for the shard to which the account i belongs when the
accounts i and j belong to different shards. The total load Lk(S) in shard k per
unit time is

Lk(S) :=
∑

i,j,S(i)=k∧S(j)=k

lij +
∑

i,j,S(i)=k∧S(j)6=k

l′ij (1)

There is a correlation between shard fees and shard load. Let the overall
load of the shard be L, the fee for processing the load l be C(L, l). In reality, the
function C cannot be determined exactly because the fees are proposed by users,
and the auction determines which transaction is incorporated into the block by
validators.

There are several optimization problems that can be used to improve UX
while equalizing the load on all users — for example, minimizing the load on
the heaviest shard. Shards with heavy loads have higher transaction fees, and
reducing them can significantly reduce overall fees. We formulate this as follows.

minimize max
k

Lk(S) (2)

This optimization problem is a polynomial-time reducible to TAPs with sim-
ple formula transformations. If the above optimization problem can be solved in
polynomial time, TAPs can be solved in polynomial time using that algorithm.
Therefore, this load balancing problem is NP-hard.

Good results can also be obtained by minimizing the overall fee. In order to
reduce the overall cost, it is necessary to reduce the load on the shard, which
is the bottleneck and has the highest load. Thus, the load on all the shards is
equalized, and the overall fee is reduced. In addition, the fee is reduced when the
number of cross-shard transactions is reduced. Therefore, that optimization is
performed so that the number of cross-shard transactions is reduced. This also
reduces latency. We formulate this as follows.

minimize
∑
k

C(Lk(S), Lk(S)) (3)

This problem is as difficult as the one above.

3.2 Competition

Since the above optimization problem is NP-hard, heuristics and approximate
algorithms must be used to find a good solution. However, running such heavy

6 Naoya Okanami, Ryuya Nakamura, and Takashi Nishide

processing algorithms on-chain is not worth the cost, so in our design, anyone can
submit a solution, and we build a game that rewards the player who submitted
the best solution.

For each epoch, the account assignment at the next epoch is determined
using the information of the previous epoch. If too old information is used for
the past epoch information, load balancing suitable for the transaction in the
next epoch is not performed, so it is necessary to use appropriate information of
the previous.

If we use transaction load information for all accounts, the amount of infor-
mation is O(n2), where n is the number of accounts. In operation, transaction
load information of a certain percentage of accounts selected at random for each
epoch is used.

To host a competition, we have nodes that act as competition coordina-
tors. The coordinators formulate and publicize the account assignment as an
optimization problem using past epoch transaction load information. The com-
petition players understand the optimization problem, work on optimization,
and submit a solution when the time limit is approaching. After the epoch, the
coordinators evaluate the solution and rewards the player who submits the best
solution. Since a malicious player may submit a poorly evaluated solution and
put unnecessary load on the coordinators, the player must pay a fee when sub-
mitting the solution. Also, if there are multiple players who have both submitted
the best solution, the winner is the one with the fastest submission time.

Collecting transaction data. Every shard has transaction load information
for accounts belonging to that shard. To perform in-protocol load balancing, this
information must be passed to the competition coordinators. The method differs
depending on the sharding protocol.

For example, in Ethereum 2.0, the coordinators are a beacon chain that
manages shard chains. The shard chain and the beacon chain are connected by
a method called crosslink, and data is exchanged safely by giving authentication
to the data users want to pass. This exchange is engraved in the beacon chain.

Since the transaction load information of all accounts cannot be included in
the beacon chain, all shards construct data as follows:

1. Every epoch, a shard i randomly samples k contractsAi = {ai,1, ai,2,, ai,k}.
2. Accounts not selected by random sampling are merged as a single virtual

account as ai,rest. Let R be the unselected set and Cix,jy be the cross-shard
transaction load from shard i account x to shard j account y.

Cirest,jy =
∑
x∈R

Cix,iy

The shard chain sends the information constructed in this way to the beacon
chain by crosslink.

Load Balancing for Sharded Blockchains 7

Player algorithms. The player selects themselves the algorithm that they will
use. Any simple hill-climbing method, simulated annealing, genetic algorithm,
etc. can be used. Players can use a mathematical optimization solver or a com-
bination of the solver and their own algorithm. The longer the sharding protocol
that introduced in-protocol load balancing operates, the more efficiently the
player’s algorithm will evolve, and the better the load balancing will be.

Commit-reveal scheme. If the solution is submitted, another player may copy
the solution and submit an improved solution starting from that solution. If the
commit-reveal scheme is adopted, this problem can be solved by releasing the
solution and verifying the best solution after the competition is over. That is, the
player submits the commitment of (solution ‖ signature). However, there must
be at least one honest player in order for the user to benefit from in-protocol
load balancing.

3.3 Security analysis

The above protocol only changes the state transition rules, so it does not affect
the safety, liveness, and validity properties of the blockchain. Also, the consensus
protocol and validator validation rules have not changed radically.

4 Experiments

In this section, we show that applying in-protocol load balancing to Ethereum
2.0, modeling users, and simulating them actually reduces shard imbalance and
reduces fees and latency.

4.1 Simulation settings

This subsection describes the user strategy, the algorithm used by the player,
and the sharded blockchain model to be simulated.

User strategy. We use Berenbrink’s method [5] to model how a user behaves.
Let m be the number of accounts, n be the number of shards and m � n. In
one unit time, a user moves an account with the following strategy.

Let i be a shard to which the user belongs, and j be a destination shard, and
j is selected at random. Let Ci and Cj are the loads of i and j per unit time,

respectively. if Cj < Ci, it moves with probability 1− Cj

Ci
. If not, do not move.

When performing in-protocol load balancing, the shard allocation is changed
by the protocol, so the cost of moving the shard cannot be ignored. If Ct is the
cost of moving the shard, and the time until the next allocation, that is, epoch

time is T , if Cj +Ct/T < Ci, then the probability 1− Cj+Ct/T
Ci

to move. If not,
do not move. As T becomes shorter, Ct/T becomes so large that the user has
no incentive to change the shard.

8 Naoya Okanami, Ryuya Nakamura, and Takashi Nishide

Simulated annealing approach. We use the simulated annealing approach
for this simulation. Simulated annealing is a generalization of hill climbing and
is a metaheuristic used for difficult problems such as NP-hard problems [9]. It is
difficult to find the global optimal solution by using hill climbing, but simulated
annealing can obtain a value close to the global optimal solution. The algorithm
is such that a solution in the neighborhood of the provisional solution is selected
at random, and the transition is always made when the score is improved.

The pseudo code is as follows (see Algorithm 1). Let T be the time to ex-
ecute this algorithm. Neighbor is a function that randomly selects a nearby
solution, Score is a function that evaluates the solution, and GetTime is a
function that returns how much time has passed since this algorithm was exe-
cuted. The evaluation value of the score function moves to the better one. There-
fore, Score = (whole total fee). The Probability is a function that returns
the probability of transition based on the current time t, the current assignment
score, and the next assignment score. The Random function returns a uniform
random number between 0 and 1.

Algorithm 1 Simulated annealing approach
1: t← 0
2: while t < T do
3: next assignment← Neighbor(current assignment)
4: sc ← Score(current assignment)
5: sn ← Score(next assignment)
6: if sn > sc then
7: current assignment← next assignment
8: else
9: p← Probability(t, sc, sn)

10: if p > Random() then
11: current assignment← next assignment
12: end if
13: end if
14: t← GetTime()
15: end while

Also, no competition will be held, i.e., one person submits one solution.

Sharded blockchain model. The amount of account information that can be
acquired depends on the number of accounts in the entire blockchain. Thus we
set the parameter to q this time. Ethereum 2.0 will generate one block every 12
seconds, with 64 shards planned to be introduced first. Ethereum currently trades
300, 000 accounts a day. Simulating all of them requires a lot of computational
resources, so this time we set T = 0.1 seconds and simulate with 8 shards and
1, 000 accounts.

We model how accounts trade with other accounts in a directed graph. The
vertex in the graph represents an account, and the directed edge extending from

Load Balancing for Sharded Blockchains 9

account i to account j represents the average load on account i in all transactions
between account i and account j in one unit time (block). This load includes not
only the transaction from account i to account j, but also the load at the time of
transaction from account j to account i. In reality, transactions are concentrated
on very popular accounts such as Maker DAO, so we set a parameter called
account popularity, so that the more popular the account is, the more easily
transactions to that account are sent. The popularity of the account is simply a
quadratic function. In other words, the popularity of account i is popularityi =
i2. Popularity was used to weight the load when trading. The transaction load
between an account i and an account j is popularityi + popularityj . However,
it is impossible in reality that one account is trading with all other accounts.
Therefore, considering the total number of accounts 1000, an account accounts
for 5% of all accounts.

We believe this setting is sufficient to show the effect of our in-protocol load
balancing.

Parameter Value

Number of shards 8
Number of accounts 1000
Load balancing interval 0.1 second
Number of accounts traded by one account 5 %
Number of epochs 1000

Table 1. Simulation parameters

4.2 Results and comparisons

As a result of the simulation, the sum of account fees and the number of cross-
shard transactions have reduced. Although this setting was small, the effect of
in-protocol load balancing was confirmed.

10 Naoya Okanami, Ryuya Nakamura, and Takashi Nishide

Fig. 1. Decrease of total transaction fees when all accounts selfishly move between
shards at each epoch (blue: selfish load balancing, orange: in-protocol load balancing)

Fig. 2. Decrease of number of cross-shard transactions when all accounts selfishly move
between shards at each epoch (blue: selfish load balancing, orange: in-protocol load
balancing)

Figures 1 and 2 show selfish load balancing and in-protocol load balanc-
ing when all accounts selfishly move between shards at each epoch. Both have
converged to specific values, but in-protocol load balancing has reached better
values. This is a natural result because selfish load balancing converges to ε-

Load Balancing for Sharded Blockchains 11

Nash equilibrium, while in-protocol load balancing can obtain a Pareto optimal
solution.

Fig. 3. Decrease of total transaction fees when half accounts selfishly move between
shards at each epoch (blue: selfish load balancing, orange: in-protocol load balancing)

Fig. 4. Decrease of number of cross-shard transactions when half accounts selfishly
move between shards at each epoch (blue: selfish load balancing, orange: in-protocol
load balancing)

12 Naoya Okanami, Ryuya Nakamura, and Takashi Nishide

Figures 3 and 4 show selfish load balancing and in-protocol load balancing
when all accounts selfishly move between shards at each epoch. Even if the
user acts selfishly, in-protocol load balancing achieves better results than selfish
load balancing, similarly to the above results. It is thought that the result will
depend on the implementation, but it is a result that the effect of in-protocol
load balancing has been raised by the user acting selfishly.

5 Discussions

In this paper, simulated annealing is used, but it may be possible to find a more
efficient solution by using another heuristic algorithm or by using mixed-integer
optimization with a mathematical optimization solver. Moreover, the simulated
annealing approach used this time does not speed up, such as updating the
difference or implementing it with C++ or Rust. The algorithm actually used
for in-protocol sharding will be refined as players compete. What is important is
not the efficiency of the algorithm used, but the use of our proposed in-protocol
load balancing can improve total fees and latency over selfish load balancing.

The settings we tried this time have room for experimentation in modeling the
number of shards and accounts, and various settings are possible using statistical
distributions, game theory, and more measured data from Ethereum 1.0. A more
strict simulation may show that in-protocol load balancing is more effective. It
may also indicate cases where in-protocol load balancing is not effective, as well
as cases where it is effective. The reality is that we need to deal with even larger
data, so the results obtained by in-protocol load balancing may not be worth
the cost.

In addition, although one level of sharding was considered, there is room to
consider how hierarchical sharding such as CBC Casper [1] should be performed.

6 Conclusion

We confirmed the phenomenon by modeling and simulating users with the ex-
pectation that a few shard accounts would be concentrated by acting selfishly
in sharded blockchains with the account/balance model. We also showed that
the shard load imbalance worsens UX, due to higher transaction fees and in-
creased latency. To solve this problem, we proposed a load balancing framework
for sharded blockchains. This framework achieves in-protocol load balancing by
taking advantage of the incentive to change shards by changing account assign-
ments frequently. We also proposed a method for efficiently obtaining good ac-
count assignments in the competition format. Although small, simulations show
that transaction fees and latency are lower than the selfish load balancing that
occurs when users act on their own with this in-protocol load balancing.

References

1. cbc-casper/cbc-casper-paper: An Introduction to CBC Casper Consensus Proto-
cols, https://github.com/cbc-casper/cbc-casper-paper

Load Balancing for Sharded Blockchains 13

2. Cross-shard contract yanking - Sharding - Ethereum Research, https://

ethresear.ch/t/cross-shard-contract-yanking/1450

3. Adolphs, C.P., Berenbrink, P.: Distributed selfish load balancing with
weights and speeds. In: Proceedings of the Annual ACM Sympo-
sium on Principles of Distributed Computing. pp. 135–144 (2012).
https://doi.org/10.1145/2332432.2332460

4. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.:
Chainspace: A Sharded Smart Contracts Platform. Internet Society (feb 2018).
https://doi.org/10.14722/ndss.2018.23241

5. Berenbrink, P., Friedetzky, T., Ann Goldberg, L., Goldberg, P.W., Hu, Z., Martin,
R.: Distributed selfish load balancing. SIAM Journal on Computing 37(4), 1163–
1181 (2007). https://doi.org/10.1137/060660345

6. Billionnet, A., Costa, M.C., Sutter, A.: An Efficient Algorithm for a Task Alloca-
tion Problem An Efficient Algorithm for a Task A [location Problem 503. Journal
of the AwocLatlon for Computing Machinery, VOI 39(3), 50–518 (1992)

7. Buterin, V.: A NEXT GENERATION SMART CONTRACT & DECENTRAL-
IZED APPLICATION PLATFORM. Tech. rep.

8. Chaudhary, V., Aggarwal, J.K.: A Generalized Scheme for Mapping Parallel Al-
gorithms. IEEE Transactions on Parallel and Distributed Systems 4(3), 328–346
(1993). https://doi.org/10.1109/71.210815

9. Dowsland, K.A., Thompson, J.M.: Simulated annealing. Handbook of Natural
Computing 4-4, 1623–1655 (2012)

10. Eth2.0: ethereum/eth2.0-specs: Ethereum 2.0 Specifications, https://github.

com/ethereum/eth2.0-specs

11. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding. In: Pro-
ceedings - IEEE Symposium on Security and Privacy. vol. 2018-May, pp.
583–598. Institute of Electrical and Electronics Engineers Inc. (jul 2018).
https://doi.org/10.1109/SP.2018.000-5

12. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making Smart Contracts
Smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS’16. pp. 254–269. ACM Press, New York, New
York, USA (2016). https://doi.org/10.1145/2976749.2978309

13. Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for
task assignment problem. Microprocessors and Microsystems 26(8), 363–
371 (2002). https://doi.org/10.1016/S0141-9331(02)00053-4, www.elsevier.com/

locate/micpro

14. Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games.
Annual ACM Symposium on Parallel Algorithms and Architectures 16, 188–195
(2004). https://doi.org/10.1145/1007912.1007941

15. Wang, G., Shi, Z.J., Nixon, M., Han, S.: Sok: Sharding on blockchain. AFT 2019
- Proceedings of the 1st ACM Conference on Advances in Financial Technologies
pp. 41–61 (2019). https://doi.org/10.1145/3318041.3355457

16. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: Scaling blockchain via full
sharding. In: Proceedings of the ACM Conference on Computer and Communi-
cations Security. pp. 931–948. Association for Computing Machinery (oct 2018).
https://doi.org/10.1145/3243734.3243853

