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Abstract. Bitcoin is a decentralised digital currency that serves as an
alternative to existing transaction systems based on an external central
authority for security. Although Bitcoin has many desirable properties,
one of its fundamental shortcomings is its inability to process transac-
tions at high rates. To address this challenge, many subsequent protocols
either modify the rules of block acceptance (longest chain rule) and re-
ward, or alter the graphical structure of the public ledger from a tree to
a directed acyclic graph (DAG).
Motivated by these approaches, we introduce a new general framework
that captures ledger growth for a large class of DAG-based implemen-
tations. With this in hand, and by assuming honest miner behaviour,
we (experimentally) explore how different DAG-based protocols perform
in terms of fairness, as well as efficiency. To do so, we isolate different
parameters of the network (such as k, the number of pointers to previous
blocks) and study their effect on those performance metrics.
Our results demonstrate how the DAG-based ledger protocols described
by our framework cope with a high transaction load. More specifically,
we show that even in a scenario where every miner on the system is
honest in terms of when they publish blocks, what they point to, and
what transactions each block contains, fairness and efficiency of this kind
of ledgers can break down at specific hash rates if miners have differing
levels of connectivity to the P2P network sustaining the protocol.3

1 Introduction

Bitcoin and many other decentralised digital currencies maintain a public ledger
via distributed consensus algorithms implemented using blockchain data struc-
tures. End users of the currency post transactions to the P2P network sustaining
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the protocol and said transactions are bundled into blocks by miners: agents
tasked with the upkeep of the ledger. With respect to Bitcoin, the prescribed
longest chain rule dictates that miners must bundle pending transactions into
a block that also includes a single hash pointer to the end of the longest chain
seen by the miner in their local view of the ledger. Furthermore, in order for
a block to be valid, its hash must lie below a dynamically adjusted threshold.
Hence, miners must expend computational resources to find valid blocks. Due
to this Proof-of-Work structure, if all miners follow the protocol, the number of
blocks they contribute to the blockchain is proportional to the computational
resources they dedicate to the protocol, i.e. their hash power. In addition, min-
ers are incentivised to follow the protocol via judicious incentive engineering
through block rewards. This latter point also implies that miners earn block
reward proportional to their hash power, thus making Bitcoin a fair protocol.

As mentioned before, Bitcoin dynamically adjusts its target hash for valid
blocks so that the totality of all miners active in the protocol find a block every
ten minutes on average. This feature of the protocol makes consensus more
robust, as this time-scale is much larger than the time it takes for a block to
propagate on the P2P network supporting Bitcoin. However, since the size of
blocks is limited, Bitcoin inherently suffers from a scalability problem. Thus in
spite of Bitcoin being strategy-proof and fair, it suffers in its e�ciency: which
we define as the expected ratio of the number of valid transactions in the ledger
to the number of all transactions posted in the P2P network. On the other
hand, simply decreasing confirmation times and demanding higher transaction
throughput by either increasing the overall block creation rate or block size can
also affect these very properties of the protocol. For instance, delays in the P2P
network may cause miners to have different views of the ledger, which can in turn
directly make achieving a consensus more difficult, or lead miners to be strategic
when they would have otherwise acted honestly. Ultimately, it seems that Bitcoin
fundamentally strikes a delicate balance between being strategy-proof and fair
at the cost of efficiency.

There have been many attempts to cope with Bitcoin’s inherent throughput
limitations, with [16, 21–23] being some notable examples. All of these papers
focus on how security can be maintained when the throughput is increased and
follow the common direction of either modifying Bitcoin’s longest chain rule or
implementing a different graphical structure underlying the ledger.

In GHOST [21] an alternative consensus rule is proposed to the longest chain
of Bitcoin, focusing on creating a new protocol that maintains security guaran-
tees even when faced with high transaction loads. In this setting, GHOST takes
into account the fact that forks are more likely to be produced when the un-
derlying ledger still takes the form of a tree, as with Bitcoin. More specifically,
when deciding what a newly mined block should point to, GHOST no longer
myopically points to the head of the longest chain, but rather starts from the
genesis block and at each fork, chooses the branch of the fork that leads to the
heaviest subtree in the ledger until reaching a leaf to point to. In this way, blocks
that are off the main chain can still contribute to the final consensus, which ar-
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guably maintains a degree of robustness to strategic mining while coping with
high throughput better than Bitcoin.

In [22, 23] protocols SPECTRE and PHANTOM are proposed, with ledger
structures in the form of directed acyclic graphs (DAG). The protocols in both
of these implementations suggest that every newly created block has to point to
every available (visible) leaf in the ledger. In that way every created block will
eventually become part of the consensus, and the security of the system remains
unaffected by forks that will be produced due to high throughput, since they
will in turn be part of the ledger. A possible advantage is that the system can
become more resilient to attacks that focus on increasing the block rewards of a
miner. On the other hand, ordering the transactions and preventing other types
of strategic behaviour becomes more complicated.

Motivated by these ideas, we design a new theoretical framework that cap-
tures a large family of DAG-based ledger implementations (including those men-
tioned in previous paragraphs). We achieve this by introducing a parametric
model which lets us adjust the number of blocks each newly created block can
point to, the block attributes a miner takes into account when choosing what
blocks to point to, and the number of transactions a block can store. Finally,
we describe a theoretical framework for ledger growth in these DAG-based mod-
els, along with a novel simplification for extrapolating valid transactions from a
ledger under the assumption that all miners are honest. With this in hand, we
are able to answer how our family of DAG-based ledgers copes with the high
transaction loads they are intended to tackle. Indeed, our results are structural
in nature, for we show how fairness and efficiency suffer from high transaction
rates in spite of all agents behaving honestly in a given DAG-based ledger.

We want to mention at this point that we are mostly interested on parameter
k, the number of pointers to previous blocks. In contrast to the existing liter-
ature regarding DAG-based protocols which assumes that k is conditioned to
other parameters of the system (i.e. informational parameters q in our model),
something crucial for the security of this kind of protocols, we choose to study
this parameter unconditioned for reasons that we will explain shortly.

Our Results. We provide a parametric model that tries to capture a large
family of DAG-based ledgers and we make an attempt to quantify what is the
effect of adjusting the different parameters of our model on fairness and e�-
ciency. As we already mentioned, an important parameter for our model is k,
for which we assume that is specified by the protocol, fixed and independent
of the other parameters (i.e informational parameters) that we will eventually
introduce in our model. Although this comes in contrast with most of the exist-
ing literature where k depends on the informational parameters of the system,
the reason behind this choice is twofold: We want to study the contribution of
parameter k to the protocol in terms of fairness and e�ciency, while in addi-
tion we desire to explore what would happen in a situation where the optimal
value of k, the value that does not produce orphaned blocks and thus makes the
protocol inherently fair, cannot be selected (i.e. when it is huge). Although this
approach may lead to loss of security for the protocol (since the chosen k may
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not be the optimal one), we want to explore how this parameter affects fairness
and e�ciency under the assumption of honest mining.

In this line of thought, our simulations allow us to show how specific trans-
action load regimes affect the efficiency of different protocols in our class of
DAG-based ledgers. Furthermore, we show that in almost all transaction load
regimes fairness is affected and exhibits a complicated relationship with respect
to agent connectivity in the underlying P2P network. Our results are exploratory
in nature, fixing most aspects of the network (assuming a simple, or worse case,
setting if possible) and modulating specific parameters to study their effect on
fairness and efficiency.

We are interested in exploring the behaviour of the protocol under several
value choices of k and q. Some highlights of our results, that we consider both
interesting and surprising, are the following: 1) Although we assume honest
behaviour from the miners, it is interesting to explore the performance for choices
of k and q that increase the security of the system (i.e. choices of values where
both the number of the pointers as well as the information that the miners have
for the network is high). In our simulations the safest such zone is for k � 2
and q = 0:2. In particular, for smaller values of k we observe that fairness is
compromised leading to interesting mining behaviour: the gains of small miners
are generally increasing in their qi, whereas for larger miners they decrease:
this is because small miners care more about making sure their few blocks are
retained, while large miners appear to act ‘selfishly’ by mining in parallel to
the others’ blocks, not by malice but by ignorance. 2) Leaving the security of
the system aside, another region that we find interesting is the one where q can
vary from 0.0001 up to 1 and for which we observe that there is a huge increase
in the efficiency of the system as k increases from 1 to 2. On the other hand,
something that seems surprising is that by increasing the value of parameter k
to 3 or even to 1 seems that does not provide a significant added benefit to
the efficiency of the system. This quite interestingly implies that we can achieve
efficiency guarantees even if we do not choose the optimal value for k (since this
behaviour is the same for a variety of values of q).

Related Work. Bitcoin was introduced in Nakamoto’s landmark white paper
[18] as a decentralised digital currency. Since its inception many researchers
have studied several aspects of the protocol, i.e. its security and susceptibility
to different types of attacks [1, 7, 8, 10, 17, 19], how it behaves under a game-
theoretic perspective [4, 14, 15] and how its scalability and inherent transaction
throughput issues can be improved. Since the latter is the most related to our
work, we give a more detailed exposition in the paragraphs that follow. Before
we proceed, we also want to refer the reader to [3, 24] for some extensive surveys
which provide a good view of the research and challenges that exist in the area.

Sompolinksy and Zohar [21], study the scalability of Bitcoin, analysing at the
same time the security of the protocol when the delays in the network are not
negligible. More specifically, they build on the results of Decker and Wattenhofer
[5] and explore the limits of the amount of transactions that can be processed
under the protocol, while also studying how transaction waiting times can be
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optimised when there is also a security constraint. In the same work, the Greedy
Heaviest-Observed Sub-Tree chain (GHOST) is also presented as a modified
version of the Bitcoin protocol selection rule, and as a way of obtaining a more
scalable system with higher security guarantees. It is interesting to mention that
many existing cryptocurrencies currently use variations of the GHOST rule, with
Ethereum [6] and Bitcoin-NG [9] being some notable examples. The authors
argue that under this rule, the possible delays of the network cannot affect the
security of the protocol even if the designer allows high creation rates of large-
sized blocks and thus a high transaction throughput.

Subsequently, Kiayias and Panagiotakos [13] further study the GHOST pro-
tocol and provide a general framework for security analysis that focuses on pro-
tocols with a tree structure. They expand upon the analysis of [21] and follow
a direction similar to the one presented in the work of Garay et al. [10], which
only studies chain structures and cannot be directly implemented in the setting
of GHOST. We would like to point out that in [10] Garay et al. also provide an
extended analysis of their framework for the partially synchronous model under
the existence of bounded delays in the underlying P2P network of the protocol.

Lewenberg et al. [16] propose the structure of a DAG, instead of a tree,
as a way of dealing with high block creation rates and blocks of large size.
Building on this idea, the same authors in [23] present SPECTRE, a new PoW-
based protocol that follows the DAG-structure, and is both, scalable and secure.
More specifically, they argue that SPECTRE can cope with high throughput of
transactions while also maintaining fast confirmation times. They also analyse
its security by studying several types of attacks. Part of the contribution of the
paper is also introducing a way to (partially) order created blocks via a voting
rule among existing blocks, which also contributes to the security of the protocol.
SPECTRE has drawn the attention of many researchers after its introduction
and we refer the reader to [11, 12, 20, 22] for some indicative related works.

2 DAG-based Ledgers

In this section we will describe a family of decentralised consensus algorithms
for public ledgers that generalise Bitcoin and SPECTRE. In what follows, we
assume that there are n strategic miners m1; :::;mn with hash powers h1; :::; hn
respectively. When a given block is found globally by the protocol, hi represents
the probability that this block belongs to mi. We will be studying DAG-based
ledger implementations. Formally, these ledgers are such that blocks and their
pointers induce a directed acyclic graph with blocks as nodes and pointers as
edges. The maximum out-degree of a block, k is specified by the protocol and
is in the range 1 � k � 1. Thus it is straightforward to see that Bitcoin for
example, is a DAG-based ledger where the DAG is in fact a tree (with k = 1).
Finally, since blocks have bounded size, we define 1 � � <1 to be the maximum
number of transactions a block can store.

As mentioned in the introduction, we are primarily interested in studying
issues of fairness and ledger efficiency in DAG-based protocols catered to a high
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throughput regime. We recall that a protocol is fair if a miner can expect to see
a block reward proportional to their hash power, and that a protocol efficiency
is the ratio of all valid transactions to all transactions broadcast over the P2P
network. In this setting, and under the assumption of a discrete time horizon,
transactions and blocks that are propagated by users in the P2P network may
take multiple turns (the time it takes for the entire system to find a block) before
they are seen by certain agents within the system. For this reason, miners only
see a portion of the entire block DAG produced by a decentralised protocol as
well as a portion of all transactions propagated by all end users of the ledger.

In actuality, transactions that are posted to the P2P network of digital cur-
rencies directly depend on other transactions. For this reason, we also model the
set of transactions that end users generate as a DAG. Furthermore, the structure
of the transaction DAG itself has important implications for how transactions
are packed in blocks for any DAG-based ledger. For example, if the transaction
DAG is a path, and we are considering SPECTRE as our DAG-based protocol,
it is easy to see that transactions will only be packed proportional to the deep-
est node of the block DAG, which in the high throughput regime can grow at
a much slower rate than that at which transactions are generated. At the other
extreme, if the transaction DAG only consists of isolated nodes, then any block
can contain any transaction, and the efficiency of SPECTRE is thus constrained
by what transactions miners see rather than the structure of the block DAG.

Ultimately, in addition to having computational power, a miner also has
informational power, which encapsulates how connected they are to the P2P
network and consequently, how much of each of the aforementioned DAGs they
see at a given time. We model the informational parameter of an arbitrary miner
mi as a parameter qi 2 [0; 1]. As qi approaches 1, mi is likely to see the entirety
of both DAGs, whereas as qi approaches 0, mi is likely to only see the blocks he
mines and transactions he creates.

2.1 Ledger Growth Preliminaries

We begin by setting some preliminary notation about graphs that it will be used
in several parts as we define the model. Let G be the set of all finite directed
graphs. For G 2 G, V (G) and E(G) � V (G)2 are the set of vertices and directed
edges of G respectively. Furthermore, for a tuple x = (xi)

n
i=1, we let �i(x) = xi

be the projection onto the i-th coordinate. Finally, we define the closure of a
subset X � V (G) of vertices, which will be needed in order to describe how a
miner perceives the current state of the network.

De�nition 1 (Closure). Suppose that G 2 G, and let X � V (G) be a subset
of vertices. We denote the closure of X in G by � (X j G) and de�ne it as the
subgraph induced by all vertices reachable from X via directed paths.

We now proceed by formally describing and exploring the stochastic growth of
a DAG-based ledger given m1; :::;mn strategic miners in a step-by-step fashion.
As we already mentioned, we assume that the ledger grows over a finite discrete
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time horizon: t = 1; :::; T . Each turn will consist of four phases: a block revelation
phase, in which nature picks a miner to initialise a block, an information update
phase, where miners update their views of the block and transaction graphs, an
action phase, in which miners employ their strategies depending on their local
information, and a natural transaction generation phase, in which non-miners
stochastically publish transactions to the P2P network.

At the end of the action phase of each turn t, we maintain a global block-DAG
and transaction directed graph, denoted by Gglobt and T globt respectively. We say

that the vertices of Gglobt are blocks and we have that Gglobt contains every block

(public or private) that has been created up to turn t. Similarly, for T globt we
have that it consists of every transaction present in the network up to point t.
We denote V (Gglobt ) = fB1; :::; Btg, where the i-th block was created at the i-th

turn and V (T globt ) = T �t [ Tt, where T �t = ftx�1; :::; tx�t g (enumerated) represents
the set of the respective block rewards and Tt the set of the transactions.

Each block Bt, has out-degree of at most k and carries at most � + 1 trans-
actions denoted by Tx(Bt) � V (T globt�1 ) such that tx�t 2 Tx(Bt). On the other
hand, the out degree of every transaction in T �t is 0 and the out degree of every
vertex in Tt is at least 1. The reason for the aforementioned constraints on the
vertices of Gglob and T globt is that when a block is found, block reward is created
“out of thin air”, and can hence be a designated as a transaction with no de-
pendencies on which future transactions can depend. In addition, if A � Gglobt ,
we let Tx(A) = [Bj2V (A)Tx(Bj) be the set of all induced transactions from the
subgraph A. Finally, these time-evolving graphs will have the property that if
t1 < t2, then Gglobt1 � Gglobt2 and T globt1 � T globt2 .

Let us now explore both the block and the transaction directed graphs from
the perspective of a miner. We suppose that each miner mi has the following
information at the end of turn t:

{ Gpubi;t : The DAG consisting of all blocks mi has inferred from Gglobt via the
P2P network.

{ PBi;t � V (Gglobt ): A set of private blocks mi has not yet shared to the P2P
network.

{ T pubi;t : The directed graph consisting of all transactions mi has inferred from

T globt via the P2P network.

{ PTi;t � V (T globt ): A set of private transactions mi has not yet shared to the
P2P network.

Finally, we let Gpubt and T pubt be the set of all blocks and transactions that have
been shared to the P2P network respectively.

De�nition 2 (Local Information). For a given miner mi, we let Li;t =

(Gpubi;t ; PBi;t; T
pub
i;t ; PTi;t) and say this is the local information available to miner

at the end of round t. We also say that Lt = (Li;t)
t
i=1 is the local information

of all miners at the end of round t.

We conclude by defining what we mean by a single-step P2P information
update for a miner, as well as what the strategy space available to a miner is.
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De�nition 3 (Information Update). Suppose that H � G are graphs. Fur-
thermore, suppose that the vertex set A 2 V (G) n V (H). We de�ne the distribu-
tion U((H;G); A; q) as a single P2P information update via a speci�c sampling
procedure. To sample G0 � U((H;G); A; q) we do the following:

{ Let X = ;
{ Independently, for each v 2 A, with probability q, add v to X.
{ Let G0 = � (V (H) [X j G).

De�nition 4 (Memoryless Miner Strategies). A miner strategy for mj

is denoted by Sj = (SIj ; S
P
j ; S

T
j ) and consists of an initialisation strategy SIj , a

publishing strategy SPj , and a transaction creation strategy STj . Each of these

functions takes as input Lj;t = (Gpubj;t ; PBj;t; T
pub
j;t ; PTj;t) at any given round t.

{ Initialisation strategy: SIj (Lj;t) = (XI ; Y I) where XI � V (T pubj;t�1)[PTj;t�1
and Y I � V (Gpubj;t�1) [ PBj;t�1. Furthermore, jXI j � � and 1 � jY I j � k.

{ Publishing strategy: SPj (Lj;t) = (XP ; Y P ) where XP � PBj;t and Y P �
PTj;t. with the property that if Bi 2 XP ) tx�i 2 Y P .

{ Transaction creation strategy: STj (Lj;t) =
�
fx1; :::; xkg; f� 1(x1); :::; � 1(xk)g;W

�
,

where each xi =2 V (T privt�1 ), each set � 1(xi) � V (T privt�1 ) is non-empty, and
W � fx1; :::; xkg.

To make sense of Definition 4, it suffices to note that SIj is invoked when

mj is chosen to mine a block. Set XI represents the set of the transactions that
the block will contain. The number of these transactions can be at most � and
each block forcibly contains tx�t . On the other hand, set Y I describes the set
of the blocks that the newly created block will point to. The number of these
blocks can be at least 1 and at most k. Moving to SPj , this is invoked when
mj wishes to publish hidden blocks/transactions to the P2P network. Finally,
STj is invoked when mj wishes to create an arbitrary (finite) amount of new

transactions x1; ::; xk that depend on transactions in T privj;t�1 (each xi has a non-

empty set � 1(xi) of dependencies). Notice that since � 1(xi) 6= ;, that forcibly
each xi can not be of the form tx�r for some r. Finally, W � fx1; :::; xkg represents
which of the newly created transactions will be broadcast to the P2P network.

Due to space constraints, we refer the reader for a detailed description and
a formal definition of the ledger growth in DAG-based ledgers to Appendix A.

3 Pf;k Ledger Models and Honest Behaviour

The main purpose of this section is twofold: first we introduce a family of honest
strategies that generalise honest mining in Bitcoin and SPECTRE called Pf;k
mining, and second we introduce constraints on D that represent honest transac-
tion generation by end-use agents in a DAG-based ledger (this includes Bitcoin
and SPECTRE as well).
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De�nition 5 (Depth and Weight of a Block). Suppose that G 2 G is a
block-DAG. In other words, G is connected and has a genesis block B0. For a
given Bt 2 G, we let w(Bt) = j� (fBtg j G))j � 1 be the weight of Bt. This is the
number of predecessors Bt has in G. We also de�ne D(Bt) = dG(Bt; B0) as the
depth of Bt. This is the graphical distance between Bt and B0, i.e. the length of
the (unique) shortest path between Bt and B0 in G.

In Bitcoin, miners resolve ambiguity in ledger consensus by initialising found
blocks to point to the longest chain in the DAG. One reason for this is that agents
have provably used significant computational power to grow said chain, and re-
writing this history is thus computationally infeasible. In DAG-based ledgers,
agents may point to multiple blocks. Thus, following this same thought process,
they should point to blocks with a provably significant amount of computation
in their histories. The issue, however, is that measuring how much computation
exists in the past of a leaf is ambiguous in DAGs: a block could have either
large weight or large depth (unlike in Bitcoin where these quantities are always
the same), and it is unclear to decide which to give precedence to. In order to
completely rank the importance of leaves in a block DAG, we simply use a family
of score functions that expresses convex combinations of depth and weight.

De�nition 6 (Score Function). Suppose that � 2 [0; 1] and � = 1 � �. We
say that f is an (�; �) block-DAG score function if for a given block-DAG, G 2 G,
f(Bt) = �D(Bt) + �w(Bt).

In a nutshell, honest block-DAG growth in Pf;k protocols with parameter �
and � prescribes that miners prepare blocks with at most k pointers that point
the locally visible blocks in the block-DAG that with highest score under f .

3.1 Valid Blocks and Transactions

In ledgers employing decentralised consensus protocols, there is an explicit con-
sensus mechanism whereby agents are able to look at their local view of the
ledger and extrapolate valid blocks and subsequently valid transactions within
the local view of the ledger. In Bitcoin for example, valid blocks consist of the
longest chain in the ledger, and valid transactions consist of transactions within
said longest chain. SPECTRE, on the other hand, has any seen block as valid,
but the valid transaction extraction process is a complicated voting procedure
that extracts a subset of transactions within the local view of the DAG as valid.
We proceed by providing a definition of valid block and transaction extractors
in Pf;k models that generalises both of these examples.

De�nition 7 (Valid Block Extractors and Valid Transaction Extrac-
tors). Suppose that G is a block-DAG and that ‘1; ::; ‘k are the k leaves in G that
have the highest score under f . Then we say that V B(G) = � (f‘1; :::; ‘kg j G)
is the DAG of valid blocks in G under Pf;k. In addition, we let V T (G) �
Tx(V B(G)) be the set of valid transactions for a speci�ed transaction extrac-
tor function V T . We say that V T is in addition monotonic if it holds that if
V B(H) � V B(G), then V T (H) � V T (G).
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In what follows we define a special type of monotonic valid transaction selec-
tion rule called present transaction selection. The reason we outline this simple
selection rule is that in Section 3.3 we will show that if all miners employ mono-
tonic valid transaction selection and the honest strategies presented in Section
3.2, then we can assume without loss of generality that they employ present
transaction selection as a valid transaction selection rule.

De�nition 8 (Present Transaction Selection). Suppose that G is a block-
DAG and that ‘1; ::; ‘k are the leaves in G that have the highest score under f .
Then we say that V B(G) = � (f‘1; :::; ‘kg j G) is the DAG of valid blocks in G
under Pf;k. In addition we say that PV T (G) = Tx(V B(G)) is the set of present
valid transactions in G under Pf;k.

3.2 De�ning SI , SP , and ST for Honest Mining in Pf;k

We define Hj = (HI
j ; H

P
j ; H

T
j ) as the honest strategy employed by mj in Pf;k,

and describe each component below.

{ HI
j : Compute A = V B(Gpubj;t ) and B = V T (Gpubj;t ). Let HI

j (Lj;t) = (X;Y ).
X is the set of at most � oldest non-block-reward (i.e. not of the form tx�r)

transactions in T pubj;t nB (ties are broken arbitrarily) with a graphical closure

in B. Y = f‘1; :::‘kg is the set of k highest-score leaves in Gpubj;t under f .

{ HP : Publish all private blocks and transactions immediately
{ HT : Create no new transactions (the assumption is that transactions created

by pools are negligible with respect to the total transaction load of the ledger)

Before continuing, we note that in the Pf;k model, HT ensures that honest
miners do not create and broadcast any transactions themselves. This, of course,
is not the case in practice, but it is an accurate approximation to a regime in
which the fraction of transactions created by miners is a negligible fraction of
all transactions created by end-users of the ledger.

Also notice that HI
j dictates that the oldest transactions will be included to

agents’ j block. We make this choice for simplicity reasons, however we want to
point out that a more sophisticated selection strategy may be more beneficial
for the protocol, especially in terms of e�ciency (as we will see in Section 4).

Implementation of Bitcoin and SPECTRE as Pf;k Protocols. With the
previous machinery in place, we can see that block-DAG and transaction-DAG
growth in Bitcoin and SPECTRE are special cases of Pf;k ledgers. For Bitcoin,
we let k = 1, and any parameter setting, (�; �) for f results in Bitcoin growth.
As for SPECTRE, we let k =1 and once more any parameter setting (�; �) for
f suffices to implement honest SPECTRE ledger growth.

3.3 Honest Transaction Consistency and Generation

As mentioned in Section 3.1, we can show that amongst monotonic transac-
tion extractors, present transaction extractors are all we need for honest ledger
growth in the Pf;k model.
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Theorem 1. If the valid transaction extractor, V T , is monotonic and all miners
employ H = (HI ; HP ; HT ), then V T is a present transaction extractor.

Proof. Suppose that Li;t = (Gpubi;t ; PBi;t; T
pub
i;t ; PTi;t) is the local information

available to mi at turn t. Since mi is honest, one can easily see that Gpubi;t =

Gprivi;t = Gi;t and T pubi;t = T privi;t = Ti;t. Clearly V T (Gi;t) � PV T (Gi;t). Now
suppose that x 2 PV T (Gi;t). This means that x 2 Tx(Br) for some block Br
found by say mj . This means that in turn r, mj invoked HI to create Br, which
means that since x 2 Tx(Br), all dependencies of x are in V T (� (Br j Gi;t)),
the valid transactions from the DAG consisting of the closure of Br in the block
DAG. However V T (� (Br j Gi;t)) � V T (Gi;t) since V T is monotonic. Therefore
x has its dependencies met in V T (Gi;t) so that x 2 V T (Gi;t). This implies
V T (Gi;t) = PV T (Gi;t) as desired. ut

In light of this theorem, we focus on monotonic valid transaction extractors
given their generality. Hence, from now on we assume that when we invoke V T ,
we in fact mean that V T is a present transaction extractor.

Regarding the honest transaction generation, HT dictates that each mi does
not produce or propagate transactions created by themselves. Hence, it is crucial
that we properly define D in the Pf;k model. At first one may be tempted to

simply treat the random growth of T globt as independent of Gglobt , but this is a

grave mistake. To see why, imagine that Gglobt contains some block Br that is
orphaned by each mi (note that this can only happen if k <1). If the growth of

T globt is independent of that of Gglobt , then it could be the case that many (if not
infinitely many) future transactions depend on t�r . However, if Br is orphaned
by all miners, tx�r is not valid, hence none of these future transactions will be
added to the ledger via close inspection of how HI is defined.

A compelling fact is that if all miners have orphaned Br, then chances are
that whatever local view of Gpubt an end-user has, they too will have orphaned
Br, and thus will not have tx�r as a valid transaction. In more direct terms, any
money created via the block reward of Br is not actually in the system for an
end-user, so if this end-user is honest, there is no reason why they would produce
transactions that would depend on this illegitimate source of currency.

De�nition 9 (Honest Transaction Distributions). Let Gglobt be a global
block DAG at turn t with k highest leaves are ‘1; :::; ‘k. In an honest setting,
V B(Gglobt ) = � (f‘1; :::; ‘lg j Gglobt ) and V T (Gglobt ) = Tx(V B(Gglobt )). We say

that D(Gglobt ; T globt ) is an honest transaction distribution if x � D(Gglobt ; T globt )

is such that x =2 T globt and its dependencies lie strictly in V T (Gglobt ).

3.4 Assumptions: Non-Atomic Miners, Payo�s and Transaction
Generation Rate

Non-Atomic Miners. For our simulations we assume that a set of honest
miners, each of whom has small enough hash power, can be modelled as one
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larger miner who re-samples their view of both DAGs each time they are chosen
for a block initialisation. This is reasonable if, for example, each miner in said
collection finds at most one block in time horizon t = 1; :::; T with high proba-
bility. We call these miners non-atomic. Due to space constraints, we refer the
reader to Appendix B for a more detailed description.

Block Rewards and Transaction Fees. We suppose that at time-step T ,
miners get a normalised block reward of 1 per block that they have in V B(GglobT ).
As for transaction fees, the full generality of Pf;k protocols only specifies how to
extrapolate valid transactions conditional upon everyone being honest, and not
who receives transaction fees (this is subsumed in the details of V T in the general
setting). For this reason we further assume that transaction fees are negligible
in comparison to block rewards over the time horizon t = 1; :::; T .

Transaction Generation Rate. Although in full generality there is no restric-
tion on how many transactions nature may create in a given turn, we impose a
fixed constraint on this quantity: �. As such, each turn introduces fxt;1; :::; xt;�g
transactions sampled from a specified honest transaction distribution D. Fur-
thermore, in our simulations we let � = �, so that the ledger infrastructure can,
in theory, cope with the transaction load if all miners have full information,
and thus we can see specifically it falls short of this objective in the partial
information setting.

4 Results

Due to lack of space, we refer the reader to Appendix C for the implementation
details and assumptions we make in simulating Pf;k ledgers.

Fairness. We recall that one of the key properties of Bitcoin is that it is fair:
miners earn block reward proportional to the computational resources they ex-
pend on extending the ledger. One of the most significant observations from our
simulations is that Pf;k ledgers are not necessarily fair as soon as the agents begin
having informational parameters, q < 1, as is the case in a high throughput set-
ting. To illustrate this phenomenon, we study a two-miner scenario with agents
m0 and m1 of hash power (1�h1; h1) and informational parameters (q0; q1). m0

is modelled as a non-atomic miner and we empirically compute the surplus av-
erage block reward of m1 relative to the baseline h1 they would receive in a fair
protocol. Our results are visualised in Figure 1. Each row of the figure represents
k = 1; 2; 3 respectively and each column represents q0 = 0:005; 0:05; 0:2. Each
individual heatmap fixes k and q0 and plots average block reward surplus for m1

as q1 2 [0; 1] and h1 2 (0; 0:5] are allowed to vary. Finally, each pixel contains the
average block reward surplus for T = 50 and averaged over 50 trials. We notice
that an added strength to our fairness result is that they hold, irrespective of
the underlying honest transaction distribution D used in practice.

The most jarring observation is that, depending on the parameters, m1 earns
a vastly different average block reward than their fair share h1. In fact, for fixed
k and q0, there seem to be three regions of the hash space h1 2 (0; 0:5] with
qualitatively distinct properties:
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{ If h1 is large enough, m1 strictly benefits from having lower q1 values. This
is due to the fact that an honest miner with small q0 necessarily sees his own
blocks and is inadvertently acting somewhat “selfishly”. Hence if their hash
rate is high enough, their persistent mining upon their own blocks may end
up orphaning other blocks and give them a higher share of valid blocks in
the final DAG.

{ If h1 is small enough, m1 strictly benefits from having higher q1 values.
Contrary to the previous point, at small hash values, m1 only finds a few
blocks, and hence they risk losing their entire share of blocks if these blocks
aren’t well positioned in the block DAG, since they are in no position to
inadvertently overtake the entire DAG via pseudo-selfish behaviour resulting
from low q1 values.

{ Finally, for intermediate h1 values, m1 no longer has a monotonic surplus
with respect to q1 but rather a concave dependency. This can be seen as an
interpolation of the previous two points.

We notice that where these qualitative regions of h1 values lie within (0; 0:5]
depends entirely on k and q0. In general, for fixed k (i.e specific rows within
Figure 1), as q0 increases, the transitions between these regions shift rightwards,
and for fixed q0 (i.e. specific columns in Figure 1) as k increases, also shifts
rightwards, as increasing k can be seen to informally have the same effect as
uniformly increasing q0 and q1 as agents are more likely to see blocks due to
multiple pointers. Of course, for k = 1 the protocol becomes fair, as every
block eventually joins the DAG. As a final observation, roughly speaking, “small”
miners benefit from increasing their connectivity to the P2P network, rather than
investing in extra hash power, while for large miners it is the opposite.

Remark 1. In practice, the parameter k would depend on the qi’s as well as
many other aspects of the network. We present a variety of results, with the
throughput ranging from relatively tame to pushed beyond what the network
can handle, where rampant strategic mining becomes an issue more important
than fairness. This is by design: assuming honest behaviour and fixing k for
different qi’s allows us to measure the worst-case improvement in fairness, even
for cases that would rarely appear in reality. Moreover, our results only cover
block reward fairness. When transaction fee rewards are included the resulting
setting is far more complicated, as a limited view of the network means that
even though no blocks are orphaned (for large enough k) there is no guarantee
transaction rewards are fairly distributed.

E�ciency. DAG-based ledgers have been created with the aim of tackling
a higher transaction load in cryptocurrencies. Given that we have a way of
modelling honest transaction growth, there are three different metrics we use to
precisely quantify how well DAG-based ledgers deal with a higher throughput
of transactions. The first and most important is the Proof of Work E�ciency.
More specifically, for a given DAG-based Ledger, we say that the PoW efficiency
is the fraction of globally valid transactions that are present within the valid sub
DAG of the block DAG, over all published transactions.




